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Prediction of cohesion energy of polymers using topological indices

Summary — The quantitative structure-property relationship (QSPR) study of the cohesion energy
(Ecoh) values for a training set of 60 polymers was carried out using only topological indices as input
parameters. A general four-parameter correlation was obtained to predict Ecoh values by stepwise
multilinear regression analysis (MLRA), with squared correlation coefficient (R2) equal to 0.9775 and
standard error of estimation (s) 2455 J/mol. The mean relative error (MRE) of Ecoh prediction was
5.82 %. The stability of the proposed model was validated using Leave-One-Out cross-validation,
randomization experiments and external test set. The model requires only topological indices for the
predictions and its advantage is relative ease in calculation of descriptors which makes it easy to apply.
Key words: cohesion energy, prediction, QSPR, polymers, topological index, multilinear regression
analysis.

PROGNOZOWANIE ENERGII KOHEZJI POLIMERÓW Z ZASTOSOWANIEM WSKA�NIKÓW
TOPOLOGICZNYCH
Streszczenie — Dotycz¹c¹ energii kohezji (Ecoh) iloœciow¹ zale¿noœæ struktura-w³aœciwoœci (QSPR —
quantitative structure-property relationship) wykorzystano do okreœlenia wartoœci Ecoh wzorcowej serii 60
polimerów z zastosowaniem w charakterze parametrów wejœciowych wy³¹cznie wskaŸników topo-
logicznych. Uzyskano ogóln¹ czteroparametrow¹ zale¿noœæ [równanie (6)] pozwalaj¹c¹ na prognozo-
wanie Ecoh metod¹ krokowej wieloliniowej analizy regresji (MLRA — stepwise multilinear regression
analysis) z kwadratem wspó³czynnika korelacji R2 = 0,9975 i ze standardowym b³êdem oznaczania s =
2455 J/mol (tabele 1 i 2, rys. 1). Œredni b³¹d wzglêdny (MRE) tego oznaczania wynosi³ 5,82 % (rys. 2).
Trwa³oœæ omawianego modelu oceniono wykorzystuj¹c sposób walidacji krzy¿owej w wariancie
Leave-One-Out (LOO) (rys. 3, tabela 3) oraz testu prognozowania Ecoh serii polimerowych próbek
zewnêtrznych (tabela 5, rys. 4). Okreœlono równie¿ istotnoœæ poszczególnych parametrów wystêpuj¹-
cych w wyprowadzonej 4-parametrowej zale¿noœci (tabela 4). Pozwala ona na wiarygodne prognozo-
wanie wartoœci Ecoh na podstawie wy³¹cznie wskaŸników topologicznych a jej dodatkow¹ zalet¹
u¿ytkow¹ jest mo¿liwoœæ unikniêcia skomplikowanych obliczeñ.
S³owa kluczowe: energia kohezji, polimery, wskaŸnik topologiczny, prognozowanie, QSPR, wielo-
liniowa analiza regresji.

COHESION ENERGY — SIGNIFICANCE IN POLYMERS‘

CHARACTERIZATION AND SOME METHODS

OF ITS ESTIMATION

The cohesion energy (Ecoh) of a material is an increase
in the internal energy per mol of the material when all
intermolecular forces are removed [1]. The cohesion
energy density (ecoh), which is the energy required to
break all intermolecular physical links in a unit volume
of the material, is given by the following equation [2]:

(1)

where: V — molar volume of the polymer.

Ecoh is a very fundamental property of a polymer and
plays a major role in the prediction of many other physi-
cal properties. The most important use of Ecoh is in calcu-
lation Hildebrand solubility parameter (δ), which quan-
tifies the interaction between polymer and solvent and is
defined as follows:

(2)
Ecoh is also useful in correlation or prediction of many

other important properties of a polymer, such as its glass
transition temperature [3, 4], surface tension, dielectric
constant, mechanical properties, permeability to small
molecules [5, 6], energies of mixing of polymer blends [7,
8], and surface free energy [9].

For liquids of low molecular weight, the value of
Ecoh can be easily calculated from the molar heat of
evaporation or from the vapor pressure as a function
of the temperature. However, the experimental deter-
mination of Ecoh for polymers is not as straightfor-
ward, since such materials do not evaporate. The ex-
perimental values of Ecoh, which are usually deduced
indirectly from dissolution and/or swelling measure-
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ments at room temperature, vary in a wide range for
many polymers [3].

Several semi-empirical group-contribution methods
based on data for small molecules as well as dissolution
and swelling data for polymers have been well-estab-
lished to predict the Ecoh values of polymers [1]. Group-
contribution methods can sometimes give the prediction
with reasonable accuracy, but a serious limitation is that
these methods are only applicable for polymers contain-
ing chemical structural groups previously investigated.
The Ecoh values of polymers also can be calculated from
molecular mechanics modeling of bulk polymers [10].

Another alternative approach to estimate Ecoh is
quantitative structure-property relationship (QSPR) on
the basis of descriptors derived solely from the molecu-
lar structure to fit experimental data. The QSPR ap-
proach is based on the assumption that the variation of
the behavior of the compounds, as expressed by any
measured properties, can be correlated with changes in
molecular features of the compounds termed descriptors
[11]. The advantage of this approach lies in the fact that it
requires only the knowledge of the chemical structure
and is not dependent on any experimental properties.
The QSPR has been successfully applied to the correla-
tion of many diverse physicochemical properties of
polymers and polymer solutions [12—17]. Bicerano [3]
has developed two successful models for the prediction
of Ecoh of two data sets with 16 and 19 descriptors in-
volved, respectively. Bortolotti et al. [9] correlated the
Ecoh values of polymers with their connectivity indices
and constitutional descriptors, and got a 12-parameter
correlation with square correlation coefficient (R2) equal
to 0.9948 and standard error of estimation (s) equal to
2834 J/mol. There are too many descriptors involved in
these models though the predictions are of good accu-
racy. Yu et al. [18] have built a four-parameter model
using quantum chemical descriptors obtained by den-
sity functional theory, with R2 equal to 0.9722 and s
equal to 2636 J/mol. However, no external data set poly-
mers were used to validate this model.

Topological indices have been widely used in the cor-
relation of physicochemical properties of organic com-
pounds. In chemical graph theory, molecular structures
are normally represented as hydrogen-depleted graphs,
which vertices and edges act as atoms and covalent
bonds, respectively. Chemical structural formulas can be
then assimilated to undirected and finite multigraphs
with labeled vertices, commonly known as molecular
graphs. Topological indices are descriptors that charac-
terize molecular graphs and contain a large amount of
information about the molecule, including the numbers
of hydrogen and non-hydrogen atoms bonded to each
non-hydrogen atom, the details of the electronic struc-
ture of each atom, and the molecular structural features
[19, 20].

QSPR models produced with only topological indices
have advantages over the models produced with other

descriptors due to the relative ease in calculating of de-
scriptors, thus lowering computational cost and time
[21, 22]. Moreover, because topological indices can be
calculated solely from the molecular structure, the mo-
dels based on them let predict the parameters required.

There have been numerous models developed with
only topological indices [19, 20, 23—26]. Some of the re-
cent studies concerning polymers are outlined here. Gar-
cía-Domenech and Julián-Ortiz [21] correlated the refrac-
tive indices and the glass transition temperatures of
polymers with their topological indices: for the predic-
tion of refractive indices, a 10-parameter correlation with
R2 equal to 0.962 was obtained; the glass transition tem-
peratures were predicted through a model with R2 =
0.894, consisting of 10 indices. Xu et al. [27] have deve-
loped a QSPR model with R2 = 0.8874 to predict θ (lower
critical solution temperature) in polymer solutions, with
ten topological indices involved.

The goal of this work was to obtain a QSPR model on
the basis of topological indices exclusively, which is ex-
pected to predict the Ecoh values of polymers with better
accuracy and relative ease in calculation.

MATERIALS AND METHOD

A total of 75 polymers with extensive structural di-
versity (Table 1 and 5) were selected as the data set,
among which, 60 polymers were randomly chosen as the
training set, and the other 15 polymers were used as the
test set. The experimental Ecoh data were taken from a
book published by Bicerano [3]. The Ecoh values ranged
from 9883 to 73 620 J/mol. The polymers chosen in the
data set were polyolefins, polyacrylates, polymethacry-
lates, polystyrenes, poly(vinyl ethers), and some others.
It is impossible to calculate indices directly for the entire
molecules because all polymers possess high values and
wide distributions of molecular weights. So, the molecu-
lar indices calculated from their repeating unit struc-
tures end-capped with two hydrogen atoms could only
be used in the QSPR studies for polymers [12, 28, 29].
The Dragon software [30] was applied to calculate a set
of 199 topological indices for each polymer. Most of
these indices are reviewed in the textbook by Todeschini
and Consonni [31].

To develop QSPR models, stepwise multilinear re-
gression analysis (MLRA) [32] was applied to the train-
ing set. Step-by-step variables are added to the equation,
and a new regression is performed. If the new variable
contributes significantly to the regression equation, the
variable is retained; otherwise, the variable is excluded,
hence preventing over-fitting. F-to-enter and F-to-re-
move were 4 and 3, respectively.

The goodness of the correlation was tested by the R2,
the adjusted R2, the F ratio values, the standard error of
estimate s and the significance level value p. The ad-
justed R2 value was calculated using the following equa-
tion:
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(3)

where: n — number of members of the data set, m — number
of indices involved in the correlation.

The adjusted R2 is a better measure of the proportion
of variance in the data explained by the correlation than
R2 (especially for the correlations developed with use of
small data sets) because R2 is somewhat sensitive to
changes of n and m. In particular, in small samples, if m
is large relative to n, there is a tendency for R2 to be
artificially high, i.e., for the correlation to fit the data very
well. In the extreme case if n = (m + 1) the correlation will
fit the data exactly, i.e., R2 = 1 [33]. The adjusted R2 cor-
rects the artificiality introduced when m approaches n
through the use of a penalty function which scales the
result.

After the generation of the correlation equation, a
variance inflation factor (VIF) was calculated to test if
multicollinearities existed among the indices in the
model, which was defined as [34]:

(4)

where: Rj
2 — coefficient of determination between the j-th

coefficient regressed against all the other indices in the model.
This is an arbitrary statistic in that the null hypothesis

is not being accepted or rejected. Because of this, there is
no distinct cutoff value for VIF. A common procedure is
to set the value at 5.0, with any number higher indicat-
ing “serious” multicollinearity [35].

The predictive ability of the selected equation was
measured through the percentage of mean relative error
(MRE), defined as:

(5)

The reliability of the final QSPR model was further
validated internally using Leave-One-Out (LOO)
cross-validation. Randomization experiments were
also performed to prove the possible existence of for-
tuitous correlations. To do this, the dependent variable
was randomly scrambled and used in the experiment.
Models were then investigated with all members in
the index pool to find the best models. The s and R
values found using random dependent variables
should be very poor if the original model did accu-
rately represent the relationship between chemical
structure and Ecoh. Finally, the model was validated
using the external test set.

RESULTS AND DISCUSSION

Stepwise MLRA was used to select the indices for the
best model and the final correlation obtained for the
training set contained four indices, with R2 = 0.9775 and
R2

adj = 0.9759. The correlation equation for Ecoh is the
following:

where: χ0A — average connectivity index χ-0 [20]; χ0sol —
solvation connectivity index χ-0 [20]; Jhetm — Balaban-type
index from mass weighted distance matrix [36]; CIC1 — com-
plementary information content (neighborhood symmetry of
1-order) [37].

The Ecoh values predicted from Eq. (6) are shown in
Table 1 and Fig. 1, while the distributions of relative er-
rors (RE) for the prediction are given in Fig. 2. MRE for
the prediction is 5.82 %. The min/max values of RE are
0.08 %/26.31 %. Among the 60 polymers, there are 41
samples having RE less than 5.82 % and only five pre-
sent RE greater than 15 %. The absolute mean error be-
tween the experimental and predicted Ecoh values is 1845
J/mol, which reveals the quality of the selected model
for the prediction of Ecoh. The statistical characteristics of
the best four indices in Eq. (6) are shown in Table 2. The
p values are quite small for each index, which shows that
each is needed for accounting the variance and that the
model is not overfit. The final ratio of training set poly-
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Fig. 2. Distributions of relative errors (RE) for the training set

Fig. 1. Plot of the predicted vs. experimental Ecoh values of
polymers for the training set (see Table 1)
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T a b l e 1. Prediction of cohesion energy (Ecoh) of polymers (the training set)∗)

No. Polymer Ecoh, J/mol experimental Ecoh, J/mol predicted RE, % Ecoh, J/mol (CV)*) RE (CV), %

1 Poly(1,2-butadiene) 17 299 19 456.1 12.47 19 580.8 13.20
2 Poly(1-butene) 19 092 18 621.0 2.47 18 575.4 2.71
3 Poly(2-ethylbutyl methacrylate) 59 130 57 431.8 2.88 57 240.8 3.20
4 Poly(3,4-dichlorostyrene) 60 062 61 839.5 2.96 62 030.1 3.28
5 Poly(4-methyl-1-pentene) 27 549 27 202.1 1.26 27 176.1 1.36
6 Poly(α-methyl styrene) 42 616 44 420.7 4.24 44 509.8 4.45
7 Poly(α-vinyl naphthalene) 58 796 57 968.7 1.41 57 905.0 1.52
8 Poly(benzyl methacrylate) 64 919 67 017.3 3.24 67 255.6 3.60
9 Poly(cyclohexyl methacrylate) 59 978 59 484.2 0.83 59 450.3 0.88

10 Poly(dimethyl siloxane) 16 870 19 525.2 15.74 18 914.1 12.12
11 Poly(ethyl α-chloroacrylate) 46 495 47 072.7 1.25 47 108.4 1.32
12 Poly(ethyl acrylate) 36 619 32 695.4 10.72 32 593.4 11.00
13 Poly(ethyl methacrylate) 40 039 39 706.3 0.84 39 695.9 0.86
14 Poly(isobutyl methacrylate) 48 496 48 220.5 0.57 48 201.5 0.61
15 Poly(isoprene) 21 863 23 068.1 5.52 23 130.3 5.80
16 Poly(methyl α-chloroacrylate) 41 554 43 715.7 5.21 43 907.1 5.67
17 Poly(methyl acrylate) 31 678 29 336.4 7.4 29 217.8 7.77
18 Poly(methyl ethacrylate) 40 637 40 598.7 0.10 40 597.7 0.10
19 Poly(methyl methacrylate) 35 097 36 726.5 4.65 36 772.2 4.78
20 Poly(n-butyl acrylate) 46 502 41 354.1 11.08 41 263.2 11.27
21 Poly(n-butyl methacrylate) 49 921 49 136.1 1.58 49 102.1 1.65
22 Poly(n-hexyl methacrylate) 59 804 57 918.0 3.16 57 755.0 3.43
23 Poly(n-octyl methacrylate) 69 686 66 711.0 4.27 66 211.3 4.99
24 Poly(N-vinyl carbazole) 73 620 72 369.3 1.70 72 347.2 1.73
25 Poly(N-vinyl pyrrolidone) 45 488 42 316.0 6.98 42 093.1 7.47
26 Poly(o-chloro styrene) 49 712 51 593.0 3.79 51 692.2 3.99
27 Poly(o-methyl styrene) 43 256 44 672.4 3.28 44 739.1 3.43
28 Poly(p-bromo styrene) 53 851 55 288.2 2.67 55 371.9 2.83
29 Poly(p-chloro styrene) 49 546 51 814.5 4.58 51 938.8 4.83
30 Poly(p-methoxy styrene) 48 405 51 183.4 5.74 51 298.6 5.98
31 Poly(p-methyl styrene) 43 090 44 853.4 4.10 44 936.8 4.29
32 Poly(p-t-butyl styrene) 55 060 58 716.7 6.65 58 986.8 7.14
33 Poly(p-vinyl pyridine) 46 371 42 646.4 8.04 42 294.5 8.80
34 Poly(sec-butyl methacrylate) 48 872 48 909.2 0.08 48 916.2 0.10
35 Poly(styrene sulfide) 52 747 51 366.0 2.62 51 293.9 2.76
36 Poly(t-butyl methacrylate) 46 427 48 154.3 3.73 48 351.4 4.15
37 Poly(vinyl acetate) 31 136 32 695.4 5.01 32 736.3 5.14
38 Poly(vinyl benzoate) 56 558 58 108.9 2.75 58 209.6 2.93
39 Poly(vinyl bromide) 24 536 24 584.9 0.20 24 588.5 0.22
40 Poly(vinyl chloride) 20 231 21 937.6 8.44 22 096.3 9.22
41 Poly(vinyl cyclohexane) 39 197 36 148.5 7.78 35 627.5 9.11
42 Poly(vinyl cyclopentane) 34 256 32 332.3 5.62 31 978.8 6.65
43 Poly(vinyl ethyl ether) 22 240 24 559.0 10.43 24 678.9 10.97
44 Poly(vinyl fluoride) 11 622 14 254.3 22.65 14 556.4 25.25
45 Poly(vinyl methyl ether) 17 299 21 849.8 26.31 22 070.9 27.59
46 Poly(vinyl n-butyl ether) 32 122 33 534.3 4.40 33 604.4 4.62
47 Poly(vinyl pivalate) 43 107 43 962.7 1.99 44 017.8 2.12
48 Poly(vinyl propionate) 36 453 36 956.3 1.39 36 969.1 1.42
49 Poly(vinyl sec-butyl ether) 31 073 33 184.9 6.80 33 272.1 7.08
50 Poly(vinyl trimethylsilane) 25 746 22 346.3 13.21 23 067.6 10.41
51 Poly(vinylidene chloride) 29 784 29 585.1 0.67 29 564.2 0.74
52 Poly(vinylidene fluoride) 12 566 13 512.9 7.54 13 594.8 8.19
53 Polyacrylamide 44 296 39 278.0 11.33 38 664.5 12.72
54 Polyacrylonitrile 34 157 26 194.8 23.32 25 559.9 25.17
55 Polychlorotrifluoroethylene 24 706 23 754.5 3.86 23 627.6 4.37
56 Polyethylene 9883 8104.9 18.00 8135.7 17.69
57 Polyisobutylene 16 870 17 230.8 2.14 17 271.6 2.39
58 Polypropylene 13 774 14 358.2 4.25 14 439.5 4.84
59 Polystyrene 39 197 40 156.8 2.45 40 250.8 2.69
60 Polytrifluoroethylene 14 837 15 053.0 1.46 15 097.9 1.76

MRE 5.82 6.10
∗) RE — relative error, CV — coefficient of variantion, MRE — mean relative error.
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mers and number of indices is 1:15, what further sup-
ports this conclusion. The VIF values for each index are
well below the general cutoff of 5.0, indicating that the
indices are weakly correlated each to other and the
QSPR model can be regarded as an optimal regression
equation.

T a b l e 2. Indices involved in the best correlation derived for Ecoh

[Equation (6)]

Index χ Dχ t-test p-level VIF

Constant 46 754.6 7068.2 6.615 0.000 000
χ0A -37 057.9 7848.8 -4.721 0.000 017 2.474
χ0sol 7177.3 258.8 27.737 0.000 000 3.307
Jhetm -2129.8 413.7 -5.149 0.000 004 1.335
CIC1 -6311.8 648.4 -9.735 0.000 000 1.718

The LOO cross-validation was used to test the stabi-
lity of the model obtained and the suitability of its appli-
cation to unknown polymers. The results are shown in
Table 1 and Fig. 3. The squared correlation coefficient
and MRE for the cross-validation are 0.9747 and 6.10 %,
respectively. Thus, the selected model is reliable in pre-
diction of Ecoh values of polymers. These results are ac-
ceptable, thus the introduction of additional descriptors,
such as electronic or quantum mechanical, which afford
more information but are sophisticated to calculate, is
unnecessary.

The model was validated further by applying the
randomization test. It consists of repetition of the calcu-
lation procedure several times after scrambling the de-
pendent variables randomly. If all models obtained by
the randomization test have relatively high values for
both R2 and statistics, this is due to a chance correla-
tion and implies that the current modeling method can-
not lead to an acceptable model using the available data
set. Several randomizations of the dependent variables
were performed and the results are shown in Table 3.
The low R2 and values indicate that the good results

of the original model are not due to a chance correlation
or structural dependency of the data set.

T a b l e 3. Results of randomization test

Iteration R2 Iteration R2

1 0.1529 0.0000 11 0.0776 0.0000
2 0.1038 0.0000 12 0.1296 0.0000
3 0.2338 0.0000 13 0.0912 0.0000
4 0.1958 0.0000 14 0.2877 0.0000
5 0.2922 0.0000 15 0.1480 0.0000
6 0.2836 0.0000 16 0.1731 0.0000
7 0.1587 0.0000 17 0.2869 0.0000
8 0.3501 0.0000 18 0.1536 0.0000
9 0.2064 0.0000 19 0.3995 0.0000
10 0.1931 0.0000 20 0.3251 0.0000

The statistical parameters obtained exclusively using
topological indices herein are comparable in quality to
those obtained by Yu et al. [18] using quantum chemical
descriptors from more complicated density functional
theory calculation (R2 = 0.9775 vs. R2 = 0.9722, =
0.9747 vs. 0.9643, F = 597.9 vs. F = 480.6, s = 2455 vs. s =
2636, MRE = 5.82 % vs. 5.93 %).

The results from Bicerano‘s model [3] are slightly bet-
ter than those of the present model. However, this is not
surprising because Bicerano‘s model consists of 16 topo-
logical and constitutional descriptors while the present
model comprises only four descriptors. On the other
hand, an improvement in the results by introducing
more descriptors into the correlation equation should be
carefully considered because overfitting and chance cor-
relations may in part be due to such an approach [28].

The topological characteristics of the present model
indicate that dispersion interactions and the extent of
branching of the molecules affect the cohesion energy of
polymers. To test the dependency of Ecoh on each index,
R2, R2

adj, and s were calculated with one-index lin-
ear regression for the entire set of 60 polymers (Table 4).

T a b l e 4. Summary of one-parameter models for 60 training data
set

Index
Ecoh, prediction

equation
R2 R2

adj s

χ0sol
Ecoh = -1747.8 +

6745.3 χ0sol
0.9185 0.9171 0.9133 4551

χ0A
Ecoh = 19 647 409 –

194 835 χ0A
0.6232 0.6167 0.5979 9787

CIC1
Ecoh = 14 612.5 +

10 542.3 CIC1
0.1856 0.1716 0.1348 14 389

Jhetm
Ecoh = 35 255.0 +

1068.8 Jhetm
0.0036 -0.0135 -0.0930 15 916

The first important index is the 0-order solvation con-
nectivity index χ0sol [20] which gave the best overall fit
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with the R2 value equal to 0.9185 for the data set. The
χ0sol is calculated by Eq. (7):

(7)

where: Li — principal quantum number of the i-th atom, δi —
corresponding vertex degree, n — total number of atoms in the
molecule.

This index can be considered as entropy of solvation
[38] and somehow indicates the dispersion interactions
occurring in the polymers. The large contribution of this
index in the Ecoh values of polymers is in agreement with
the contribution that one would expect for the disper-
sion interactions of polymers, since Ecoh can be formally
divided into the contributions of the dispersion, polar
and hydrogen bonding components.

The second important index is χ0A [20] which corre-
lates with Ecoh of R2 = 0.6232. χ0A is defined by Eq. (8),

(8)

where: B — number of bonds in the molecule.
The 1-order complementary information content

CIC1 [37] is defined by Eq. (9),
CIC1 = log2n – IC1 (9)

(10)

where: ni — number of atoms in the i-th class, IC1 — 1-order
information content itself defined by Eq. (10).

The CIC1 index describes the atomic connectivity in
the molecule, while χ0A and CIC1 encode the size and
the atomic constitution of the polymer. These parameters
directly affect the intermolecular interaction [39]. Jhetm
shows only a small contribution to the cohesion energy
of polymers.

The one-parameter model with χ0sol as the sole index
has an R2 value equal to 0.9185 (vs. 0.9775), which means
that introduction of the three additional indices does not

increase R2 too much. However, the s value for this one-pa-
rameter model is 4551 J/mol, i.e. 85.4 % greater than that
obtained with the four-parameter model (2455 J/mol).
Thus the three additional indices should be introduced.

T a b l e 5. Prediction of the cohesive energy Ecoh of polymers (the
test set)

No. Polymer
Ecoh (expt.)

J/mol
Ecoh (pred.)

J/mol
RE
%

61 Poly(1,4-butadiene) 17 972 19 456.2 8.26
62 Poly(acrylic acid) 35 329 32 420.4 8.23
63 Poly(chloro-p-xylylene) 49 546 51 462.4 3.87
64 Poly(ethylene sulfide) 23 433 23 153.2 1.19

65
Poly(ethylene

terephthalate)
74 087 75 908.3 2.46

66 Poly(maleic anhydride) 39 831 44 607.6 11.99
67 Poly(methacrylic acid) 38 748 34 732.0 10.36
68 Poly(N-phenyl maleimide) 76 653 67 757.8 11.60

69
Poly(oxy-1,1-dichloro-

methyltrimethylene)
48 954 46 894.3 4.21

70 Poly(p-phenylene) 29 314 28 794.5 1.77
71 Poly(p-xylene) 39 031 40 032.7 2.57
72 Poly(thiocarbonyl fluoride) 21 175 18 050.7 14.75

73
Poly(α,α,α‘,α‘-tetrafluoro-

-p-xylene)
45 353 39 966.7 11.88

74 Poly(ε-caprolactone) 42 067 42 404.9 0.80
75 Poly[thio(p-phenylene)] 42 698 42 098.4 1.40

MRE 6.36

The results of prediction for the test set from Eq. (6)
for 14 polymers are shown in Table 5 and Fig. 4. MRE is
6.36 %, which confirms the validity of the proposed
model.

CONCLUSIONS

A general QSPR model with good statistical parame-
ters (R2 = 0.9775 and MRE = 5.82 %) has been obtained to
predict the cohesion energy values of polymers with
four topological indices. This model is very useful be-
cause topological indices can be calculated easily as long
as the molecular structure of the compound concerned is
known. The topological characteristics of the present
model also show the importance of the dispersion inter-
actions and the extent of branching of the molecules to
the cohesion energy of polymers.
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