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Rheological behavior of fiber-filled polymer melts at low shear rate

Part. I. MODELING OF RHEOLOGICAL PROPERTIES

Summary — In this review the models applied for the description of non-Newtonian liquids were
presented. Highly filled polymer melts showing distinct yield stress are such liquids. The effects of
forces of geometrical and physical interactions among the filler particles on the properties were dis-
cussed. These interactions forces depend on the type, size and shape of filler particles and in case of
fibers also on their orientation. The deformations and flow of fibers assemblies in the melt under shear
stress were discussed. The equations used for description of three- or two-dimensionally oriented
fibers sets are presented.
Key words: polymer melt, filler, modeling of rheological properties, viscosity, yield stress, shear rate.

CHARAKTERYSTYKA REOLOGICZNA W ZAKRESIE MA£YCH SZYBKOŒCI ŒCINANIA STOPÓW
POLIMERÓW NAPE£NIONYCH W£ÓKNAMI. Cz. I. MODELOWANIE W£AŒCIWOŒCI REOLO-
GICZNYCH
Streszczenie — W pracy przegl¹dowej przedstawiono modele stosowane do opisu w³aœciwoœci reo-
logicznych cieczy nienewtonowskich, którymi s¹ stopy polimerów o wysokim stopniu nape³nienia
wykazuj¹ce wyraŸn¹ granicê plastycznoœci. Omówiono wp³yw na omawiane w³aœciwoœci si³ oddzia-
³ywañ geometrycznych i fizycznych miêdzy cz¹stkami nape³niacza. Si³y tych oddzia³ywañ zale¿¹ od
rodzaju, wielkoœci i kszta³tu cz¹stek nape³niacza, a w przypadku w³ókien, tak¿e od ich orientacji.
Przedyskutowano tak¿e deformacje i przep³yw zespo³ów w³ókien w stopie pod wp³ywem naprê¿eñ
œcinaj¹cych. Przedstawiono równanie stosowane w przypadku zespo³ów w³ókien o orientacji trójwy-
miarowej oraz dwuwymiarowej.
S³owa kluczowe: stop polimeru, nape³niacz, modelowanie w³aœciwoœci reologicznych, lepkoœæ, gra-
nica plastycznoœci, szybkoœæ œcinania.

Filled thermoplastics with short fibres belong to
a new class of engineering materials with high commer-

cial importance [1—5]. Compared to pure polymers,
these materials possess improved physical properties,
such as stiffness and strength. During manufacturing
they flow through channels or cavities in the molten
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state, thus it is very important to know their rheological
behavior, as it influences the physical properties of the
final product strongly. It is expected that the flow condi-
tions and flow properties of fibre-filled polymer melts
affect the structures developed by fibres or fibre orienta-
tion in the polymer matrix as it was described for exam-
ple in [6].

Up to now, considerable research has been directed
towards the melt flow properties of these materials.
However, most of the investigations have been limited
to high shear rate (extrusion-based shear viscosity mea-
surements). It is well known that polymer melts highly
loaded with fibre show complex and different flow be-
havior at low shear rate region compared to that at high
shear rate [7]. In previous papers an extensive set of
rheological data, including steady shear viscosity, first
normal stress difference and dynamic viscoelastic pro-
perties of various kinds of short fibre-filled polymers in
a relatively low strain rate region was presented
[8—18].

The present work consists of two parts. In the first
part the state-of-the-art in the rheology based on the pa-
pers dealing with flow of highly concentrated particle-
and fibre-filled polymer solutions, suspensions and
melts at low shear rate will be presented. In the second
part experimental results concerning rheological beha-
vior of short fibre-filled polymer melts, mainly at low
shear rate region will be described.

RHEOLOGICAL PROPERTIES OF HIGHLY FILLED
SYSTEMS SHOWING THE YIELD STRESS

An interpretation of viscosity and yield stress in
dense slurries was presented by Wildemuth and Wil-
liams [19]. Shear viscosity of highly concentrated parti-
cle-filled solutions was measured in the shear rate range
of 10-3 to 102 s-1 using a cone-plate rheometer. The rela-
tive viscosity (ηr) is given here as

(1)

where: Φ — volume fraction of the particles, ΦM — maxi-
mum packing fraction for the high-shear microstructure,
which should reveal the roles of particle size distribution and
the character of suspending fluid, [η] — intrinsic viscosity.

A new model that invokes the stress dependence of
ΦM correlates ηr well under non-Newtonian conditions
with simultaneous prediction of yield stress at suffi-
ciently high value Φ. A critical result is that the shear
stress (τ) [instead of shear rate ( )] governs the micro-
structure and rheology. ΦM(τ) dependence was found to
change from its low-shear value — ΦM0 (in the range of
0.6—0.7) typical of disordered and aggregated systems,
towards its high-shear limits — ΦM0 (close to 0.74) which
is characteristic for close-packed fully-dispersed sphe-
res. Yield stresses (τy) would arise (η → ∞ at τ → τy)
when ΦM0 ≤ Φ ≤ ΦM∞ and can be presented as:

(2)

where: A, m — constants which were derived on the basis of
stress-induced microstructure change and relation ΦM(τ).

White [20], on the other hand, proposed a theory of
rheological behavior of polymer melts highly loaded
with small particles (less than l µm), which exhibited
yield values in steady shear flow. This behavior is
generally attributed to particle interactions, which
lead to the formation of gel. Flow may only be initia-
ted when sufficient stress or strain energy is applied to
break the gel structure. The author discussed three-di-
mensional theory on the base of von Mises yield-crite-
rion [21].

Another equation was obtained by phenomenologi-
cal modification of Tanaka-White model, which pro-
vided flexibility to the description of suspension visco-
sity of the system exhibiting an apparent yield stress
[22]. One way to describe the effect of an apparent yield
stress is to express the viscosity as a function of shear
rate. The equation incorporates the shear-thinning be-
havior of the matrix polymer:

(3)

where: n — power law index of matrix polymer, Kc — consis-
tency index of the filled system.

The above equation is volume-fraction independent
and needs to incorporate the concentration. In the case of
Newtonian medium, the modified Bingham model is ex-
pressed as:

(4)

where: µM — Newtonian viscosity of polymer matrix.
However, polymers have commonly non-Newtonian

behavior, so the viscosity of filled systems can be pre-
sented on the base of Bird-Carreau equation for the me-
dium:

(5)

where: η0 — zero-shear viscosity of the filled system, λ —
constant depending on the volume fraction of the filler.

Constant λ is specified as:

(6)

where: λM — constant representing the shear viscosity of
matrix polymer.

Another paper deals with rubber-modified polymer
[23]. The conclusion of the study is that the viscosity
increase at small shear rates is more pronounced for
higher concentrations and smaller particles. It can be in-
terpreted as the effect of the filler on yield stress. Yield
stress here is independent on temperature within the ac-
curacy of the measurements and is significantly higher
for elongation than for shear.
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In the rheology of suspensions the yield stress is usu-
ally determined according to the plot proposed by Cas-
son [24] ( ), and the extrapolation of the linear
part of the curve to = 0 gives the square root of the
yield stress. However, in some cases a straight line can
only be drawn if the values at very small shear rates are
neglected.

Lobe and White [25] studied the influence of carbon
black (CB) on the rheological properties of polystyrene.
They found that at the loading between 10 and 20 vol. %
the system took on the characteristics of gel and the re-
sponse was similar to that of a Schwedoff body [25].
They proposed a stress-deformation history constitutive
equation. Another result of the study was finding a yield
value not only for shear flow, but also for elongational
deformation. In case of these systems one should think
in terms of yield surfaces rather than yield values. The
mechanical model representing gel behavior (high mo-
dulus and memory at low stresses, and deformation
with a yield value corresponding with viscoelastic fluid
at higher deformation rates) was the Schwedoff model
modified to the following form:

(7)

where: λ — relaxation time, G — shear modulus of the fluid.
The interaction forces between the filler particles, re-

sulting in the formation of a three-dimensional particle
network, play an important role in rheological and pro-
cessing behaviors of filled thermoplastics. For closely
packed systems, the inertia of the particles as well as
geometrical and physical interactions of the particles
caused by packing prevent the particles from relative
motions below the yield stress level.

When tensile or stretching forces are applied to the
network during deformation, they increase the distance
between particles and the particles move with respect to
each other. For the material to flow, these forces must
exceed a critical value, which is also affected by the filler.
The influence of the interfacial interactions on the yield
stress was investigated experimentally for CB- and mica-
-filled PE-HD [26]. The relation between yield stress and
interfacial interactions was explained on the base of
stress-strain curves of the systems. For pure polymer no
yield stress was observed, but as the concentration in-
creased, the ability to form a network and strength of the
network increased. Yield behavior of filler suspensions
in gel medium was also investigated [27]. The presence
or absence of a yield stress in concentrated dispersion is
of great importance for the flow and physical stability of
many industrial products. Barnes and co-worker fol-
lowed the yield stress through measurements with use
of a stress controlled rheometer [28, 29]. The actual
value, however, was much smaller than that obtained by
previous methods of linear extrapolation from high
shear rates/shear stresses. The relation between the vis-
cosity and the volume fraction of a suspension was

given in the following equation, which is similar to eq.
(1):

(8)

where: ηS — viscosity of the suspension medium.
The exponent [η]Φm is approximately 2, Φm is a mea-

sure of ordering (hence controlling the viscosity) and
varies with τ according to equation:

(9)

where: Φm0, Φm∞ — asymptotic values of the maximum vo-
lume fraction at zero and infinite shear stress, respectively; B
— constant with the dimension of inverse stress.

When Φm in eq. (8) is replaced with that in eq. (9), the
following equation is obtained for viscosity:

(10)

The parting line between a finite viscosity at low
shear stress and an infinite viscosity at finite shear stress
is at Φ = Φm0. Above this volume fraction τy increases
continuously and becomes infinite at Φ = Φm∞. It can be
derived from the equations:

(11)

The yield stresses for various types of fillers in poly-
mer melts can be determined from the Casson plots [24].
In experimental research [9, 30] it was found for particle-
-filled polyethylene that the yield stress estimated from
the Casson plots increased exponentially with increase
in Φ. While there are some doubts about the presence of
a true yield stress for suspensions in which the particles
are not small enough for colloidal interactions, an appa-
rent yield stress is, in most cases, obtained from Casson
plots for highly filled materials.

Rheological properties of fibre-filled polymer melts
were studied by Mutel and Kamal [31] using a rotational
rheometer. An important factor of the flow behavior was
the initial state of fibre orientation in the system. Oscilla-
tory shear tests yielded highly strain dependent loss and
storage moduli even at very small strain amplitudes.
However, stress response was found to be sinusoidal in
most cases, although the properties were strain depen-
dent. Unlike for particle fillers, for fibre-filled systems
yield behavior was not observed, except at high concen-
trations (above 30 vol. %) or for long non-rigid fibres.
The Casson plots revealed yield stresses of about 100 Pa,
what was only 4 % of the minimum stress obtained at
the lowest shear rate. Furthermore, large stress over-
shoots were observed followed by thixotropic behavior,
which is attributed to the slow change in fibre orienta-
tion. The fluid was highly anisotropic, and fibre-wall in-
teractions contributed significantly to the stress during
transient flows.
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Kataoka et al. [15] on the other hand, followed the
suitability of parallel-plate viscometer for rheological
studies of fibre-filled polymer melts. They found that the
flow curves obtained under different loads were almost
parallel to the -axis, and the yield stress was only ap-
parent and not determined uniquely for materials with
high fibre content. From the comparison with the data
obtained from the Casson plots it is clear that the exis-
tence of yield stress induces the unstable flow for
squeezing between parallel plates.

Onogi et al. [32] discussed the correlation between
rheological behavior and re-formation of a structure
formed by dispersed fibres in polymer solutions, and
its destruction at higher shear rates. They observed the
yield stress, although only apparent one, for low fibre
content, in contrast to the suspensions with spherical
particles, and showed that yield stress for titanate fi-
bres (aspect ratio ar > 40) in polystyrene solution is
proportional to Φ [3] at the whole range of the fibre
content.

Similar dependence of the yield stress on the fibre
concentration was discussed for flexible fibre-filled
suspensions [8, 10]. Here, yield stress of short and flex-
ible fibre systems is again nearly proportional to Φ
[22], but for other more flexible-fibre filled systems the
slopes of the curves τy versus Φ become lower. It was
concluded that the reasons for these results are inter-
actions between fibres and the wall, and also the as-
pect ratio, size and flexibility of the fibres played their
roles in apparent yield stress appearance. Rheological
properties of the medium, on the other hand, were less
significant.

Dynamic viscoelastic properties of long glass fibre re-
inforced polypropylene in molten state were measured,
and the yield behavior of the materials was discussed in
another paper [12]. The yield value of complex modulus
(G*) is a critical value at which the material starts to flow.
It was supposed that for the oscillatory flow of filled
systems a similar to Casson‘s equation dependence of G*
on angular frequency (ω), could be constructed. If the
relation between the complex modulus yield value (G*

y)
and Φ are plotted in semi-logarithmic coordinates, G*

y of
the composite increases abruptly for 0.1 ≤ Φ ≤ 0.15, and
then the increase is only moderate. The influence of fibre
length and content on the dynamic viscoelastic proper-
ties of glass fibre reinforced polypropylene in molten
state was also investigated experimentally [16], and an
abrupt increase in G*

y with rising fibre length was ob-
served. Furthermore, G*

y increased linearly with the
fibre content up to 15 vol. % loading.

The Casson plots also served for the assessment of
metal fibre (Al, Cu) and carbon fibre (CF) filled polymers
[11]. When the log τy is plotted versus Φ, we can obtain a
straight line. These results revealed that the yield stress
increased exponentially with fibre content; the yield
stresses of the systems depended strongly upon the fibre
aspect ratio and fibre rigidity.

DEFORMATION AND FLOW OF FIBRE ASSEMBLY
UNDER SHEAR

Three-dimensionally oriented fibre assembly

The constitutive equations for deformation of three-
-dimensionally oriented fibre assembly were discussed
by Yamada and Horikawa [33, 34]. They can be useful
for discussion of the deformation and flow of fibre-filled
polymer systems under low shear/strain rate. The no-
tion expects an assembly where fibres consist of parts
“b” (effective fibre elements — have no ends and affect
the stress on the assembly under deformation), and parts
“a” (non-effective fibre elements — have two free ends
and do not influence the deformation behavior). The
stress tensor (τij) can be expressed as:

(12)

where: Nf — total number of fibres per unit volume, � — fibre
length, V — volume of the fibre assembly, E — tensile modu-
lus of the fibre, εk� — strain tensor, si, sj, sk, s� — orthogonal
coordinates presented by polar coordinates (r, θ, ψ), i, j, k, � =
1, 2, 3, Ω(θ, ψ) — fibre orientation distribution function, Γ —
effective element fraction which gives the part of effective fibre
elements in the total number of elements.

When m is the number of points where a fibre is in
contact with other fibres, Γ is a function of m:

(13)

As the number of elements of a fibre is (m + 1), the
probability that an element which has two free ends will
be in the non-effective part is a, and the probability to be
in the effective part is b = 1 – a. They are given by the
following equations:

Equation (13) shows that Γ is smaller than the value
of b in the small region of m, and both Γ and b approach
to 1 when m is higher than 100. From the investigation of
the fibre assembly geometry, the number m is given as:

(16)

where: d — fibre diameter, I — fibre orientation function.
Function I is given by the following equations:

From eq. (16), when Nf >> 1 m is given as:

(19)
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The relations of Φ and aspect ratio of fibres (ar) are:

and τij is given as

(22)

The values of m and τij are proportional to Φ and ar of
the product. When εkl and function Ω(θ, ψ) are given, the
shear stress τij (i ≠ j) or shear modulus can be calculated
from eq. (22). Considering that the yield stress shows the
critical value of the shear deformation of fibre assembly,
we can obtain some information concerning the relation
among yield stress and characteristics of the fibre assem-
bly, such as volume fraction, fibre length or aspect ratio,
fibre orientation and so on. Fibre orientation distribution
function and shear modulus will be now taken into
deeper consideration.

When γ is given as simple displacement of a plane
against other parallel plane of rectangular parallelepi-
ped in the fibre assembly in which the fibres are oriented
randomly, the change of fibre orientation distribution
function under simple shear is given as a function of
elongation ratios in three directions:

where: χ — rotation angle of the axis under shear.
Value of χ is given as:

(24)

When three-dimensionally oriented fibre assembly is
deformed in the elongation ratios of λ1, λ2 and λ3, then
V, Ω(θ, ψ) and Γ in eq. (12) are changed and must be
presented as functions of λ1, λ2 and λ3. For V it means:

V = Voλ1λ2λ3 (25)

where: V0 — volume of the fibre assembly at the initial state.
When the initial orientation distribution is homoge-

neous, the fibres are randomly oriented and Ω0 = 1/4 π,
the fibre orientation function in eq. (17) can be written as

Further, the volume fraction after deformation is a
function of the initial fibre volume fraction, Φ0:

(27)

and the shear modulus under deformation will be:

(28)

Simple shear deformation of two-dimensionally
oriented fibre assembly

The relation among shear modulus Giijj, stress σij and
shear strain εij (where i ≠ j) can be presented as

(29)

If the volume of fibre assembly does not change un-
der deformation and is kept constant (Poisson ratio is
0.5), the same as in the initial state (V0), the modulus
decreases with the decrease in aspect ratio of fibres due
to the reduction of Γ.

For simple shear deformation of two-dimensionally
oriented fibre assembly, when the elongation ratio along
X and Y axes is λ1 and λ2, respectively, and shear defor-
mation is γ, the rotation angle of axis (χ) is given by eq.
(24).

Elongation ratios along the main axes after rotation
are:

Then, the probability density function of fibre orien-
tation angle is given as

The axis of each fibre may be thought to exist in the
plane of two-dimensionally oriented fibre assembly. The
orientation angle distribution can be presented in the
following form:

(32)

where: when and when ;

i.e. we consider here the case in which all fibres are ori-
ented two-dimensionally.

(33)

where: Aψ(2k) — Fourier cosine transformation of q(ψ).
Fourier cosine transformation is given by:

(34)
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For two-dimensional deformation (λ1, λ2), Aψ(2k) is
given from eqs. (30), (31) and (34) as:

(35)

From eqs. (33) and (35), the shear modulus is

(36)

For the simplification of G relation, Hermanns‘s
orientation coefficient (J) can be used. For two-dimen-
sionally oriented fibre assembly it is defined by the fol-
lowing equation:

(37)

and also from eq. (35)

(38)

So, the simplified formula of modulus for two-di-
mensional deformations is

(39)

From the equation, G has a maximum at J = 0, i.e.,
fibres are in two-dimensional random orientation.
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