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Polymer networks: principles of formation, structure and properties

Summary -  This paper discusses the results of two types of theoretical 
investigations into the formation, structure and properties of polymer ne
tworks. First, to predict the value of the initial elastic modulus, it is impor
tant to be able to model, statistically, the molecular growth leading to ne
twork formation. A Monte-Carlo network polymerisation algorithm has 
been developed. It uses Flory-Stockmayer random-reaction statistics with 
intermolecular reaction allowed on a correctly weighted basis. The algorithm 
simulates, as a function of extent of reaction, the formation of all of the 
connections in a reaction mixture and counts all the ring structures. It also 
enables polymerisations and network structures to be simulated efficiently 
up to complete reaction. Comparisons of predictions from the algorithm 
with experimental data from end-linking polymerisations show the impor
tance of accounting for the whole distribution of sizes of ring structure in 
determining reductions in elastic modulus. An important new factor, x , is 
introduced in the interpretation of experimental data. It is the fractional 
loss in elasticity per chain in loop structures larger than the smallest 
(eqns. 13—15, figs. 7, 8 ). Tire second type of investigation shows that Mon
te-Carlo simulations (fig. 10) of the elastic behaviour of chains in networks, 
using realistic (R-I-S) network-chain models, are able to reproduce experi
mentally observed deviations from Gaussian network behaviour in uniaxial 
extension (fig. 9). The finite extensibility of the network chains causes non-af- 
fine deformation of the mean-square network-chain end-to-end distance, 
even at moderate sample deformations (A. « 1.5). An increase in the propor
tion of fully extended chains with increasing macroscopic strain gives rise 
to a steady decrease in the rate of network free-energy change with strain, 
causing a reduction in the network modulus. There is no need to invoke a 
tran- sition from affine to phantom chain behaviour as deformation incre
ases. For a complete understanding of the structure and elastomeric proper
ties of polymer networks, both types of investigations need to be combined. 
Thus, the number and types of elastic-chains, including loop structures, 
and their entropy-deformation relationships would be known. Tire network
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can then be deformed, and the values of initial modulus as well as 
stress-strain behaviour predicted.
Key words: network polymerisation, Monte-Carlo simulation, loop structu
res, elastomeric properties of polymer networks.

The molecular structures and macroscopic properties 
of network polymers depend more closely on reactant 
structures (molar masses, functionalities, chain flexibili
ties) and reaction conditions (dilution, proportions of 
different reactants) than do those of linear polymers. To 
understand and predict elastomeric properties, it is im
portant to be able to model, statistically, the molecular 
growth leading to network formation. In Section 1, a 
new Monte-Carlo network polymerisation algorithm is 
used to simulate, as a function of extent of reaction, the 
formation of all of the connections in a reaction mixture 
and to count all the ring structures. It enables polymeri
sations and network structures to be simulated efficien
tly up to complete reaction.

In Section 2, Monte-Carlo simulations of the elastic 
behaviour of realistic network chains are described. The 
simulations are able to reproduce experimentally obse
rved deviations from Gaussian network behaviour in 
uniaxial extension. The finite extensibility of the ne
twork chains is shown to cause non-affine deformation 
of the mean-square network-chain end-to-end distance, 
even at moderate sample deformations. There is no 
need to invoke a transition from affine to phantom 
chain behaviour as deformation increases.

NETWORK FORMATION, TOPOLOGY AND ELASTIC 
MODULUS (SECTION 1)

Perfect network formation

The classical Flory-Stockmayer (F-S) treatment of the 
gel point and the accompanying changes in distribu
tions of molecular species give a basic explanation of 
the phenomena to which the behaviour and changes in 
actual polymerisations may be related. However, as dis
cussed in detail by Flory [1], the infinite species, which 
occur from the gel point to complete reaction, cannot be 
enumerated as individual molecules. In addition, F-S 
theory says nothing concerning the detailed topology of 
the network, which grows and defines its structure 
through the random reaction of its reactive groups with 
other groups on the gel and with groups on sol species. 
To obtain a perfect network, all reactions (sol-sol, 
sol-gel and gel-gel) are assumed to yield elastically ac
tive chains between junction points in the final ne
twork. This assumption is rarely true and will be exa
mined in detail in this part of the paper.

The elastomeric properties of polymer networks de
pend to a large extent on the value of the molar mass of 
the elastically active chain connecting a pair of junction 
points, M c. If a perfect network structure is assumed

then M c can be calculated directly from the reactant 
structures, taking account of unreacted groups for 
non-stoichiometric reaction mixtures. In general, the 
detailed relationship between M c and reactant structu
res depends on reactant architectures as well as extents 
of reaction and it is not possible to give a completely 
general formula [2—4]. However, formula for M c from 
most stoichiometric end-linking polymerisations (using 
star reactants) at complete reaction can be derived rela
tively simply by assuming the perfect network structu
re and relating it to the structures of the reactants from 
which it is formed. For RA2 + R'Bf polymerisations, if 
N c is the number of chains between junction points and 
Nj the number of junction points,

* L - L  a)
N, 2

as/ /2  chains emanate from each junction. Also, M c is 
simply the molar mass of two arms of the R'Bf unit plus 
the molar mass of the RA2 unit.

Relationships between concentrations of chains and 
junction points that assume perfect network structures 
are often used when interpreting elastic properties of 
end-linked networks [5]. All chains and junction points 
are assumed to be elastically active and one may repla
ce the symbols Nt. and N( by N„. and Nr/, denoting the 
numbers of elastically active chains and junction points. 
In practice, deviations from these assumptions occur 
and the values of N K or N ej deduced from elastomeric 
properties are rarely those expected from the amount of 
chemical reaction that has occurred. Such deviations 
may be due to topological entanglements and chain in
teractions [6 —1 0 ], to side reactions, incomplete reaction 
in end-linking polymerisations (giving loose ends) [1 1 , 
1 2 ] and, more fundamentally and generally, inelastic 
chain or loop formation due to the intermolecular reac
tion of pairs of groups [2—4, 10].

It is obviously important for predicting and interpre
ting the elastomeric properties of networks to be able to 
calculate the value of N n. , N rl or M, from the reactants 
and the reaction conditions used. For stoichiometric 
RA2 + R'Bf polymerisations at complete reaction, one 
may write

M = W ' (2 )
‘ K

where W,,,., — the mass o f the network, M" mid N'f refer to 
the perfect network structure.

In reality, due to intermolecular reaction the actual 
number of elastic chains, N„., is less than N ", giving

M .= ™ *L  (3)
N n.
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with M c > M ". Thus, М с may be considered as a key 
quantity to consider, both experimentally and theoreti
cally.

Elastic modulus

The close connection between network structures and 
modulus (G) is summarised by the equations, based on 
the application of Gaussian elasticity theory to uniaxial 
deformation [2—5],

a  = G (A  - A '2) (4)

G  = /1КТрф ]/3 <yu /  )2П /  M , (5)

Equations (4) and (5) are valid at relatively low defor
mations. G is the shear modulus measured at zero 
frequency, a  is the applied stress per undeformed area 
and A the experimental deformation ratio. In the absen
ce of free chain-ends, A  has the values of (1 - 2 //) and 1 
for phantom and affine chain behaviours, respectively. 
Also, A  may be put equal to 1 for values of Л near 1. p 
is the density of the dry network, ф, the volume frac
tion of network during measurement (ф, = 1  for unswol
len networks having no sol fraction), V„ is the volume 
of the dry, unstrained network and V F the volume at 
formation (assumed to be equivalent to V0, the volume 
in the strain-free reference state.) Hence, values of M c 
may be deduced from measurements of modulus using 
equation (5). For dry networks, prepared in bulk V„ = 
V r , ф, = 1 and, for measurements at small deforma
tions,

G = - ? - - R T = ^ - R T = n ..R T  (6)
M ,. Vn.

where ncc — the moJnr concentration of clastic chains. 

Intramolecular reaction

In network-forming polymerisations, the increasing 
numbers of reactive groups per molecule, together with 
the spatial correlations between groups on the same 
molecule, mean that intramolecular reaction cannot ge
nerally be neglected. For -A + B- polymerisations, intra
molecular reaction can be characterised in terms of the 
parameter P„(, for the smallest loop [2—4, 13, 14]

_ P(r = 0) (7)
1 »l> ~ x JW*

where P (r = 0) — the probability density of a zero 
end-to-end vector between reactive groups.

P„(, thus represents the mutual concentration of A- 
and В-groups at the ends of the shortest sub-chain that 
can react intramolecularly. The structure of this 
sub-chain, consisting of v skeletal bonds, and of 
root-mean-square end-to-end distance <r2>]/2, is shown 
in figure 1. If it is assumed that the end-to-end distance

Fig. 1. Sub-chain form ing a smallest loop structure illustra
ted with respect to an R A 2+RB'j- polymerisation. The dia
gram  shows two arms of a star reactant, one arm having re
acted with a difunctional monomer. The root-mean-square 
distance o f the chain o f n bonds betw een the term inal 
groups is <r2> 1/2

distribution can be represented by a Gaussian function, 
P„i, is given by

P  1 f 3 Г  («)
NAl, (271 <  r  >  J

Since the units of Р,ф are moles per unit volume, it 
can be described as the mutual concentration of a pair 
of reactive groups on the same molecule that can react 
intramolecularly [2—4]. Accordingly, a useful measure 
of the propensity of a system at a given ratio of re
actants for intermolecular reaction is X„0 , where

with c„0, the initial concentration of А -groups, representing  
the concentration of groups fo r intermolecular reaction
12— 4].

Xll0 captures the combined effects of reactant structu
res and reactive-group concentrations on intramolecular 
reaction. A decrease in chain length or chain stiffness 
(i.c., a decrease in <r>) results in an increase in P„(, and, 
hence, in the probability of intramolecular reaction and 
the formation of loop structures. Similarly, decreasing 
the concentration of reactive groups (c„0) enhances the 
probability of intramolecular reaction.

Experimental results for polyurethane (PU) 
networks

The results to be discussed in detail in the present pa
per come from six series of PU-network materials for
med via stoichiometric RA2+R'Bf polymerisations, using 
hexamethylene diisocyanate (HDI) and star polyoxy- 
propylene (POP) polyols at different initial dilutions in 
nitrobenzene [15, 16]. The structure of the polyol (R'Bf) 
was varied in order to examine the effects of branch-po
int functionality if) and reactant sub-chain length (v) on 
the moduli of the resulting networks. The six reaction 
systems are listed in table 1. As described in equation 2,
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T a b l e  1: Functionalities,/, numbers of skeletal bonds, v , in the 
sub-chains forming the smallest possible loops, and elastic chain 
molar masses in the perfect networks, M ”, for six series of stoichio
metric PU-forming, nonlinear polymerisations [15, 16]. The calcula
ted values, using detailed conformational analyses [17], of the 
mean-square end-to-end distances, <r2>, of the sub-chains of v 
bonds embedded in branched structures are also given.

PU system f V m ;
g • mol’1 <r>,  nm2

1. HDI +POP trio] 3 35 635 3.718
2. HDI +POP triol 3 62 1168 6.877
3. HDI + POP tetrol 4 28 500 2.753
4. HDI + POP tetrol 4 32 586 3.628
5. HDI + POP tetrol 4 43 789 4.605
6. HDI + POP tetrol 4 65 1220 6.581

M ° is the network-chain molar mass in the perfect ne
twork and is defined by the reactant structures. By rear
ranging the sections of the sub-chain illustrated in figu
re 1, it is easy to show that M j  is also the molar mass of 
the sub-chain of v skeletal bonds [16]. The values of 
<r2> listed in table 1 enable values of P„t, to be calcula
ted using equation (8 ).

Fig. 2. Experimental values o f M JM ° at complete reaction 
as functions o f the average initial dilution of reactive gro
ups, 2/(c„0+ch0), fo r  the six series of P U  networks of table l

Figure 2 shows plots of the values of M c, relative to 
M" for the perfect networks ( M J M ° ) ,  as functions of 
the average initial dilution of reactive groups, 
2 / ( c,io+Cm)/ for the six series of PU networks formed at 
complete reaction. The values of M c were determined 
from uniaxial compression measurements on dry and 
swollen networks and analysis of the results using equ
ations (4) and (5). For each of the six experimental sys
tems, an increase in the initial dilution of reactive 
groups results in a larger reduction in modulus, consis
tent with an increased incidence of intramolecular reac
tion and the formation of inelastic loop structures. The 
positive slopes of the plots indicate that direct relation

ships exist between intramolecular reaction (which in
creases with reactant dilution) and the network defects 
at complete reaction. This in itself shows that the domi
nant network defects are inelastic loop structures that 
can form both pre-gel and post-gel.

The plots in figure 2 show clearly that the magnitu
des of the experimentally observed reductions in mo
dulus are by no means insignificant. If perfect networks 
are formed, then M J M j  = 1. Hence, there is almost a 
ten-fold decrease in modulus in the case of the dry 
(bulk) network formed from the short-chain triol (sys
tem 1; M ° = 635 g mol'1) at the highest initial dilution of 
reactive groups. For a given branch-point functionality, 
an increase in sub-chain length (u) results in a decrease 
in M J M " ,  due to the decrease in the probability of loop 
formation (since <r2> in equation (8 ) increases). At 
approximately the same values of v, the reductions in 
moduli for tetrafunctional networks are considerably 
less than those of trifunctional ones. To a first approxi
mation, this can be understood [1 0 ], on the basis of the 
different effects of the smallest loops that can form du
ring /  = 3 and /  = 4 polymerisations.

Also, it should be noted that if the perfect networks 
were to exhibit phantom rather than affine behaviour, 
then A = (1 -  2 / f )  (equation (5)) and for /  = 3, 
M JA M °C = 3, and for / =  4, MJ A M "  = 2. Tire observed 
values of MJ M °  (or M J  A M ") are greater, therefore, 
than those for perfect networks assuming either affine 
or phantom behaviour.

General effects of loops on elasticity

The effects of the smallest and next smallest loop 
structures on the loss of network elasticity are illustra
ted in figure 3 for trifunctional and tetrafunctional ne
tworks. In perfect /-functional networks, each junction 
provides / /2  elastic chains. In the case of /  = 3, each 
smallest loop structure renders two branch points inela-

Fig. 3. Smallest (onc-mcmbercd) and next smallest 
(two-membered) loop structures in trifunctional and tetra

functional networks. О represents a reacted pair o f groups; 
■ denotes a fully-elastic junction point; Ш denotes a ju n c
tion point o f reduced elasticity; □  denotes an elastically-in- 
activc junction point
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Stic (shown as □  in the diagram), which is equivalent to 
the loss of three elastic chains. For/ = 4 ,  the effect is re
duced; each loop is associated with the loss of a single 
elastic branch point, or two elastic chains. As a result, 
trifunctional networks are expected to be the more sen
sitive to loop defects, and decreases in modulus are 
expected to be greater than those of tetrafunctional net
works with similar values of M", consistent with the 
experimental data in figure 2 .

Unlike the smallest loops, larger loop structures do 
not disrupt the continuity of the network structure, and 
therefore network chains in larger loops are capable of 
supporting a load. The two-membered loop structures 
for trifunctional and tetrafunctional networks are also 
shown in figure 2. The question as to how larger loop 
structures contribute to losses in network elasticity re
mains unanswered. The conformational entropy of a 
large loop structure will be reduced [3, 18, 19], relative 
to that of an unperturbed, free linear chain of the same 
number of skeletal bonds, due to the decrease in the to
tal number of possible chain conformations resulting 
from the constraints imposed by branch points along 
the chain and at the two chain ends. Since the origin of 
rubber-like elasticity lies in the conformational entropy 
of the network chains, any decrease in entropy should 
manifest itself as a decrease in the elasticity of the real 
network structure relative to that of the hypothetical, 
perfect one, whose network chains are assumed to be 
indistinguishable from the corresponding set of unper
turbed (free) chains.

Monte-Carlo polymerisation algorithm

Theories to predict the modulus of a network mate
rial must begin by constructing a realistic model of the 
network structure, including defects [18, 20—22]. Detai
led characterisation of the connectivity, or topology, by 
conventional, experimental means is impossible. In or
der to investigate the effects of network topology on 
elastomeric properties one must therefore use numeri
cal simulations of the network-forming non-linear poly
merisations. These have the potential to provide the ne
cessary detailed structural information. In such simula
tions, it is important to account correctly for the forma
tion of loop structures of various sizes resulting from 
intramolecular reactions, correctly weighted according 
to their probabilities of formation. To these ends, a 
Monte-Carlo (M-C) non-linear polymerisation algori
thm, originally devised by Dutton, Stepto and Taylor
[18] has been further developed [4] to simulate 
self-polymerisations (RAf), and two-monomer polyme
risations of the general type RA2+R'Bf. During the cour
se of a simulated polymerisation, populations of mono
mer units are connected together according to the rela
tive probabilities for intramolecular and intermolecular 
reactions, using X,l0 and taking account of possible loop 
sizes and the decreasing external concentration of reac
tive groups as a polymerisation proceeds. All the con

nections are recorded as a function of extent of reaction 
of A- or В-groups, along with the calculated sol and gel 
fractions, and average degrees of polymerisation.

Loop-size distributions and extents of 
intermolecular reaction

The general description and operation of the algo
rithm have been described elsewhere [22]. Here, we con
centrate on findings relevant to the experimental results 
in figure 2. Accordingly, figure 4 shows distributions at

Fig. 4. R A 2+R'B4 simulations at complete reaction. Overall 
number-fraction loop-size distributions fo r  F-S, X„u = 0.01 
and Xll0 = 0.01 simulations, each containing 1000 branch 
units

complete reaction for an F-S polymerisation and poly
merisations with L„0 = 0.01 and 0.1. The number fraction 
of loop structures of i repeat units, n ,(i), is plotted 
against i.

where N,.(i) denotes the num ber o f loop structures of size i.

The F-S simulation was achieved by modifying the 
algorithm to exclude sol-sol and sol-gel intermolecular 
reaction and to allow only random intermolecular reac
tion on the largest species beyond the F-S gel point, i.e., 
random gel-gel reaction. Tire fraction of smallest loops 
is negligible under F-S conditions. However, it is clearly 
seen that smallest loops start to dominate as incre
ases. Maxima in the distributions arise because of the 
changing different numbers of opportunities for for
ming loop structures of various sizes, integrated over 
all post-gel reaction. Also, the maximum is shifted to 
slightly smaller loop sizes in the simulations using XM 
compared with those using F-S statistics. This is to be 
expected since intermolecular reaction is then biased to
wards the formation of smaller loops.

The changes in the calculated loop-size distributions
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in the gel molecule at complete reaction with increasing 
A,„0 can be simply characterised by calculating extents of 
intermolecular reaction on that molecule resulting in 
smallest loops by the end (e) of a polymerisation, pn. „ 
as a function of \„0. Such a characterisation is useful be
cause the exact effects of smallest loops on network ela
sticity can be deduced (see Figure 3). In addition, pn, ,>7, 
the extent of reaction resulting in the formation of lar
ger loops may also be calculated, so that the total, final 
extent of intermolecular reaction may be written

Рп'.ШаЫРп-.i +  Pn-.M (И )

For illustration, the values of pn, pH, , and pn, (>7 for 
a series of RA2+R'B3 simulations are shown in figure 5. 
Notice that p,L. = 1/6, always. This is related to the 
cycle rank of the completed network. For a stoichiome
tric RA2+R'Bf polymerisation at complete reaction [23],
p,,. = (1/2) (1 -  2 / / ) .

Fig. 5. pn. total, pn. j and pn. ,->7 versus \ Mfo r RA2+R ’B2 si
mulations with 1000 branch units

Figure 5 shows that the incidence of smallest loops 
(p„. i) is negligible when X„0 = 0. Essentially, in agre
ement with F-S statistics and the results in figure 4, all 
intermolecular reaction then occurs after the gel point, 
resulting in larger loop structures. However, as i ll0 in
creases, pn% j increases at the expense of the proportion 
of larger loop structures (pn. ,>7 ). For a given value of 
L„(), it is found that tetrafunctional systems give rise to 
more loop structures than trifunctional systems, simply 
due to the greater number of opportunities for loop-for
mation in the former case. However, relative to the total 
number of loop structures, the proportion of smallest 
loops appears to be fairly insensitive to the branch-point 
functionality [2 2 ].

Correlation of model network topologies with 
measured network moduli

If the number of chains rendered elastically ineffec
tive because of loop structures, N', can be estimated, 
the reduction in modulus, or increase in M c, can be cal
culated using

M, _ n ;.;. _ N". (i2)
M" ~ N„. “ №n. -  Nl

From equation 1, N". = N( • / / 2  and the quantity N'c 
may be estimated, approximately, using p„. , and p,Vi ,>7 

from the M-C simulations.
For a trifunctional network of N, branch units, the 

number of smallest loops is given by 3Nj p,r „ which 
means a loss of elastic chains equal to 3  x 3N; ,. Ho
wever, the 3 x 3Nj pn.ti>[ chains in larger loops are sub
ject only to a partial loss in elasticity, and may be taken 
as equivalent to i  x 3 x 3N; рГ1, ы chains, where x is the 
fractional loss in elasticity per chain in a larger loop 
structure (x = 1  corresponds to a total loss in elasticity, 
seen in the case of smallest loops only). Hence, for/= 3

N ‘ = ^ Y - - (6Pr.-.t + x-6prr, . [ (13)

and substituting for N,I and N". in equation (12) yields

К  = _________ 1_________  (14)

M ° 1 ~ вРи-., -х -в р

A similar expression can be derived for tetrafunctio
nal network structures. They lose only 2 elastic chains 
per smallest loop and

: 4 = _________ ]_________  (15)

Estimates of x, the fractional loss of elasticity for cha
ins in larger loop structures, can be made using the 
experimentally determined values of M c/M "  for the se
ries of PU networks in figure 2, in conjunction with si
mulated values of pn. , and p,.L. ы  and equations (14) and 
(15). However, since p,,. 7 and pn. ;>7 calculated via the 
M-C simulations are dependent upon P„(„ values of M J  
M" depend on both x  and Р„ь- Correlations between 
M-C calculations and experimental data may therefore 
be performed in two ways:

i) bivariate least-squares fitting, to evaluate both x  
and Pal,

ii) monovariate least-squares fitting, to evaluate x 
using P„7, values calculated ab initio, via chain-conformatio
nal analyses [17] leading to the values of <r2> in table 1.

The calculated values of x and P„(, for PU systems 1 to 
6  are listed in table 2  and the fittings of the experimen-

T a b l e  2: Values of x and Pab based on correlations of experimen
tally-measured reductions in moduli for PU networks, and extents 
of intramolecular reaction calculated from M-C simulations, "biva
riate fitting; 'monovariate fitting with Pnl) values calculated ah ini
tio, using <r2> values from table 1.

PU
system / A'" P J , mol ■ L'1 bX P j ‘, mol ■ L'1

1 3 0.667 0.538 0.816 0.076
2 3 0.599 0.103 0.690 0.030
3 4 0.684 0.547 0.775 0.120
4 4 0.638 0.457 0.730 0.079
5 4 0.582 0.129 0.637 0.055
6 4 0.481 0.088 0.559 0.032
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tal M JM "C data using the bivariate and monovariate 
analyses are shown, respectively, in figures 6  and 7. The 
bivariate analysis results in very good fits to the experi
mental data and values of x  in the range 0.67 to 0.60 are 
required to reproduce the experimental modulus reduc
tions for the trifunctional PU networks (systems 1 and 
2), and 0.68 to 0.48 for the tetrafunctional PU networks 
(systems 3 to 6 ). In both cases, an increase in the size of 
the smallest loop structure results in a decrease in x, in
dicating less elasticity lost. The values of P„(, estimated 
from the bivariate fitting are much higher than those 
calculated via <r2> for the sub-chain structures. Also, 
use of the ab initio calculated values of P„h in the mo
novariate analysis results in a worse fitting of the expe
rimental data at the higher values of M JM °C, but accep
table values of x are still required ( x = 0.82 - 0.69, for 
/  = 3, and 0.78 - 0.56 for /  = 4).

Finally, figure 8  illustrates the effects of assuming 
that x = 0  (i.e. no additional loss in elasticity from larger

2 /(caO + c4o)> ^ 6  m°l
Fig. 8. M J M “C versus average initial dilution of reactive 
groups, 2/(c„0+cb0), fo r  P U  system 3 of table 1 and figu re  3. 
Experimental values of M c/M ° and calculated values using  
the bivariate and monovariate analyses and the equation (15) 
with x = 0 and the ab initio value of Pllb; 1) x  = 0, Pab =
O. 120 (from conformational calc.); 2) x  = 0.775, P„(, = 0.120  
(from conformational calc.); 3) x  = 0.684, Pab = 0.547

loop structures). The experimental data from system 3 
are shown in comparison with the results from the 
bivariate and monovariate analyses and the monovaria
te analysis with x = 0. It is obvious that the neglect of 
the loss of elasticity in larger loop structures results in a 
gross underestimation of the experimentally observed 
reductions in moduli. The effects of the values used for
P, l(, are secondary compared with the effects of assu
ming x = 0 .

THE ELASTIC BEHAVIOUR OF REAL CHAINS IN POLYMER 
NETWORKS (SECTION 2)

In this section, it is assumed that the concentration of 
elastic chains in a network is known and that all elastic 
chains are identical. These are the assumptions com
monly used when treating the elastic behaviour of 
polymer networks. Upon moderate macroscopic defor
mation the elastic restoring force can be attributed to 
the deformation, and associated reduction in entropy, 
of the individual molecular chains connecting the net
work junction points [24—26]. Although the molecular 
origin of the elastic force in a rubber-like material has 
long been acknowledged, the relationships between de
formations at macroscopic and molecular levels are not 
yet fully understood. It is thought that the initial net
work-chain deformation accompanying sample defor
mations is affine in the macroscopic strain, giving rise 
to the experimentally observed initial network modu
lus; as macroscopic deformation increases, the modulus 
is seen to decrease as the network chain deformation 
becomes less affine [25—27]. Finally, as more and more 
chains reach full extension, the network modulus incre
ases rapidly (before sample rupture), due to the onset
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of stress-induced crystallisation, or as a result of energy 
changes associated with valence-angle deformation and 
bond stretching.

The present theoretical approach elucidates the mole
cular origins of the observed decrease in the modulus 
of polymer networks at moderate sample deformations, 
taking networks of poly(dimethylsiloxane) (PDMS) 
chains as examples. Using a series of Monte-Carlo 
(M-C) calculations, the elastic properties of PDMS net
works are related to the network-chain end-to-end di
stance distribution, and are therefore assumed to arise 
solely as a result of conformational changes in the net
work chains.

Numerical calculations

The first stage in the M-C simulation involves the nu
merical generation of the radial end-to-end distance di
stribution, W(r), for unperturbed chains of various 
numbers of skeletal bonds (n ) at a fixed temperature ac
cording to a rotational-isometric-state (R-I-S) or other 
realistic model. Tire corresponding values of probability 
density P(r), are evaluated as W(r)/4nr2, assuming the 
random orientation of chains in three dimensions. For 
PDMS, the Flory-Crescenzi-Mark R-I-S model [28] was 
used [29, 30].

The second stage of the numerical work concerns si
mulation of the elastic behaviour of a network. Tire "ne
twork" is represented by a spherically symmetrical 
sample of individual chains of a given number of bonds 
in a Cartesian laboratory-reference frame; one end of 
each chain is fixed at the origin. The chains are defor
med uniaxially by a deformation ratio, X, with XxXvX, = 
1 (i.e. constancy of volume). The end-to-end distances 
are allowed to increase only up to their effective, con
formational maximum, г'шх, above which W(r) = 0. For 
an individual polymer chain, in a network of N  chains, 
the Helmholtz free-energy change upon deformation at 
an absolute temperature T, is assumed to arise solely 
from the corresponding entropie change. Hence

ation 16, and the average change per chain at each X 
calculated as

ДД / N kT  = £  ln[P(r0) / P(rH )) (17)
N ;=[

where N  is the num ber o f chains in the M -C  sample. Typi
cally, N  = 5 x 106.

Network simulation — analysis of results

Chain behaviour in uniaxial extension and com
pression may be compared by defining X (< 1), the 
conjugate uniaxial compression ratio which produces 
the same value of < r 2 > as X, the uniaxial extension ra-def
tio. For affine chain deformation at constant volume

<r l f  >= (< r02 > /3)(*.; + X\ + X\) = (< rl > /3 )QC- + 2 / X )  (18)

If X > 1, then
Л.* = X/2K1+ 8 /A.3)I/2 -1) (19)

will produce the same value of < r f f >.

The network Helmholtz free-energy change can be 
expressed as

AA/NkT=sQc + 2 / X - 3 )  (20)

for so-called Gaussian networks, with affine chain defor
mation [24,25], a plot of ДА /N k T  versus X2 + 2 /X  - 3 is li
near, with s = 1/2. In general, s will be a function of X 
and the corresponding normalised stress per unit 
unstrained cross-sectional area is

The values of s and (X2 + 2 / X -  3)d s /d  X effectively de
scribe the deviation of the simulated elastic behaviour 
from that of a bulk Gaussian network (with the same 
M c), for which s = 1/2, ds/dX  = 0 and a  = (pR T /M C)( X - 
1 /X 2).

Theoretical results and discussion

ДЛ /  NkT=  ln|P(fn)/ rllrf)} (16)

where the subscripts "0 " and "def" denote the relaxed and 
deformed end-to-end vectors, respectively.

In the M-C scheme, a chain with end-to-end distance 
r0, is first chosen, in proportion to W(r0). The X- and Y- 
coordinates of its "free" chain-end are chosen ran
domly, and the Z-component defined consistent withrn. 
Uniaxial deformations, using a series of values of X are 
applied in the Z-direction (i.e. X = X.) and the deformed 
end-to-end distances calculated by simple geometry, 
with Xx = Xlf = l/V  X. Any values of rcU.f  in excess of r ‘lin. 
are put equal to rnmx, thus limiting r to the range of va
lues determined by the bond-conformational energies 
and consistent with W (r). The associated value of W(rih,f) 
is ascertained, and hence In P(r ) evaluated as before. 
Tire Helmholtz free-energy change is evaluated via equ

The dependence of A A /N k T  on X2 + 2 /X  - 3 is shown 
in Fig. 9 for networks of PDMS chains of various 
lengths. The earlier departure from affine, Gaussian be
haviour in uniaxial extension compared with com
pression is apparent. Tire results also show that s —> 1/2 
with increasing network chain length, as expected.

The normalised stress, a /R T p , may be calculated 
using equation 2 1 , in conjunction with the values of s 
and ds/dX , evaluated from the first and second deriva
tives of the plots in figures 9a & 9b. It may then be 
converted to normalised reduced stress, [a*]/RTp/ where

Conventionally, the effects of non-Gaussian, non-affi- 
ne behaviour are represented as positive slopes of the 
so-called Mooney-Rivlin plots, [cr ] versus 1 /X  (see [26]).
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X2 + 2/X -  3

Fig. 9. Helmholtz energy change in uniaxial network exten
sion as a function of X2 + 2Д - 3 fo r  P D M S chains of va
rious num bers o f skeletal bonds (n) at 298K ; num ber of 
bonds: 1 —  40; 2 —  60; 3 —  80; 4 —  100; 5  —  150; 
a) extension, X = 1 to 2.5; b) compresion, X = 1 to 0.16

Correlation with experimental data

The simulated PDMS-network stress-strain data have 
been compared quantitatively [29] with the experimen
tal results of Erman and Flory [27]. These authors pre
pared crosslinked PDMS networks, and subjected them 
to uniaxial extension at various degrees of swelling in 
dodecane, at approximately 293K.

The experimental values of [a*] were normalised over 
<]>2/3 (where ф2 is the volume fraction of polymer in the 
swollen network) to give equivalent, dry-network be
haviour. The M-C data were transformed to a series of 
plots of [cr'J/RTp versus 1 / n  at constant 1/ X.  Simulated 
values of [cr*] were equated with experimental values of 
[а ]/ф] /3 at a reciprocal extension of 1 / X  = 0.9, to define 
an effective M-C chain length, nM.c, for each set of expe
rimental results. Note that apart from the most highly 
swollen network, nM.c 310 bonds to within ±2.5%. The 
fixing of nM_c is equivalent to choosing the value of the 
initial modulus or M c (cf. section 1). Having thus esta
blished (l/n )M.c, the simulated Mooney-Rivlin curve 
was determined from the variation of [cr']/RTp with 1 /X  
at that value of l / n M.c . The results are shown in figure
10. It can be seen that the simulated PDMS network be
haviour provides satisfactory representations of the 
experimental data.

a)

£  
»«1 *

b

1/X

1/X

Fig. 10. M -C  Mooney-Rivlin curves (— ) fitted to experi
mental data at value o f la*] at 1/X ~ 0 .9 ; density o f dry ne
twork = 974  kg ■ m 3, T  = 2 93K  [27]; a) sample A  — dode
cane: 1) ф, = 0.29, n M.c = 271 ; 2) ф, = 0.60, n M.c = 302 ; 
3) ф, = 0.80, nM.c = 311; b) sample A , unswollen: ф, = 1.00, 

п м -с =  3 1 1

CONCLUSIONS

Section 1:

The incidence of unreacted chain ends in a network 
material can, in principle, is quantified experimentally. 
Enumerating network defects due to loop structures re
mains experimentally intractable. A M-C simulation 
approach, in which the numbers of loop structures for
med are weighted according to size and the molecular 
structures of the reactants, provides a means of genera
ting realistic model network structures, whose topolo
gies are known in full detail. The subsequent correla
tions between experimentally measured network mo
duli and extents of loop-forming reaction, calculated 
via the M-C simulation, show clearly that larger loop 
structures contribute significantly to the observed loss 
of elasticity, relative to that of a perfect network.

Current work is focusing on the direct calculation of 
the entropies of larger loop structures and more exact 
calculations of P„,, for sub-chains in branched structures. 
From such calculations, moduli can be predicted more 
accurately, directly from reactant structures and reac
tion conditions, without the use of semi-empirical valu
es of x and P„(, .



464 P O L I M E R Y  2000, 45, n r  7— 8

Section 2:

The M-C network simulation using chains limited to 
their natural, conformational full extension (r„,„v ) is able 
to reproduce experimentally-observed deviations from 
affine, Gaussian network-chain behaviour at moderate 
uniaxial deformations. The concepts of phantom ne
twork and junction-point fluctuations [25—27] are not 
required. Decreases in the rate of free-energy change 
with deformation of the network occur naturally as an 
increasing proportion of network chains becomes fully 
extended.

The network simulations have recently been exten
ded to interpret stress-optical behaviour [31, 32]. Ho
wever, further avenues of investigation still need to be 
explored. As chains reach full extension, the contribu
tions of valence-angle distortion and bond stretching to 
the network free-energy change need to be investigated. 
The effects of the co-operative deformation of network 
chains, such as in loop topologies (see section 1 ) need to 
be studied, and the predictions of the model for other 
modes of deformation need to be examined against 
experiment.

Overall:

For a complete understanding of the structure and 
elastomeric properties of polymer networks, the types 
of investigations in sections 1  and 2  need to be combi
ned. Thus, from investigations of the type described in 
section 1 , the number and types of elastic chain, inclu
ding loop structures, and their entropy-deformation re
lationships will be known. The network can then be 
deformed, as in section 2 , and the values of initial mo
dulus as well as stress-strain behaviour predicted.
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