Wpływ zawartości glinokrzemianów warstwowych na zużycie ścierne kompozytów epoksydowych z ich udziałem^{*)}

Wojciech Kucharczyk^{1), **)}, Jakub Paszkowiak²⁾, Robert Gumiński¹⁾, Wojciech Żurowski¹⁾

DOI: dx.doi.org/10.14314/polimery.2015.718

Streszczenie: Badano wpływ dodatku glinokrzemianu warstwowego (5 lub 20 % obj.) na zużycie ścierne kompozytów na osnowie dwóch rodzajów żywic epoksydowych, sieciowanych za pomocą aminowego lub poliaminoamidowego utwardzacza.

Słowa kluczowe: zużycie ścierne, kompozyty epoksydowe, glinokrzemiany warstwowe.

Effect of composition on the abrasive wear of epoxy composites with layered aluminosilicates

Abstract: Two types of epoxy resins, crosslinked with amine or polyamidoamine hardener, were used as matrices in composites containing 5 or 20 vol. % layered aluminosilicate. The qualitative and quantitative effects of this additive on the mass intensity of abrasive wear of the cured epoxy resin were investigated.

Keywords: abrasive wear, epoxy composites, layered aluminosilicates.

W procesach zużywania par metal–polimer, podobnie jak w przypadku samych metali, zazwyczaj nakładają się na siebie różne mechanizmy, często wzajemnie się uzupełniające. Przykładem może być jednoczesne występowanie zużywania adhezyjnego i cieplnego [1]. Wspomniany proces zużywania elementów układu metal-polimer jest bardzo złożony, głównie ze względu na zmiany strukturalne w warstwach wierzchnich polimerów spowodowane obciążeniami, przemieszczaniem się elementów z określoną prędkością, a przede wszystkim tarciem i związanym z tym ciepłem. Zmiany te są wywołane reakcjami przebiegającymi na powierzchniach polimeru i metalu oraz w medium pośredniczącym, czyli środku smarnym (o ile występuje) [2–6].

Proces zużywania napełnianych tworzyw polimerowych przebiega odmiennie niż zużywanie metali z powodu różnic w budowie i właściwościach fizykochemicznych oraz mechanicznych, a przede wszystkim dużej wrażliwości struktury tworzyw polimerowych na ciepło. Materiały te nie przewodzą ciepła, ciepło tarcia inicjuje więc zużywanie cieplne, bądź przyczynia się do rozwoju innej postaci zużycia. W wyniku tarcia polimerów wytwarza się specyficzna warstwa wierzchnia, decydująca o przebiegu procesów tribologicznych, w tym także procesów zużywania [4].

Zużywanie ścierne napełnionych tworzyw polimerowych przebiega podobnie, jak zużywanie czystych polimerów, ale obejmuje też pewne dodatkowe zjawiska. Nitka włókna wzmacniającego lub cząstka napełniacza sypkiego zahacza o nierówności powierzchni ciał trących, co powoduje np. zerwanie i wyrywanie włókien wraz z silnie połączonymi z nimi cząstkami polimeru. Mechanizm zużycia powierzchni tworzywa wzmocnionego polega przede wszystkim na wykrawaniu, ale też na wyciskaniu bruzd zorientowanych w kierunku wektora prędkości. W materiałach takich występuje także słabo widoczne powierzchniowe odkształcenie plastyczne, którego objawy są usuwane w wyniku ubytku materiału ścieranego z warstwy wierzchniej. Należy zaznaczyć, że w przypadku bardzo niewielkiej ilości napełniacza intensywność zużycia kompozytu zmienia się skokowo. W pierwszej fazie pracy materiału następuje ścierne zużycie czystej żywicy, aż do chwili obnażenia na powierzchni ścierania cząstki lub włókna napełniacza, odpornych na zużywanie. Zwiększa się wówczas znacznie wartość rzeczywistego nacisku w nielicznych punktach styku, co prowadzi do intensyfikacji procesu zużywania, aż do usunięcia cząstki obcej, po czym następuje etap umiarkowanego zużywania ściernego polimeru [2-7].

¹⁾ Uniwersytet Technologiczno-Humanistyczny im. K. Pułaskiego w Radomiu, Wydział Mechaniczny, ul. Krasickiego 54B, 26-600 Radom.

²⁾ International Tobacco Machinery Poland Sp. z o.o., ul. Warsztatowa 19A, 26-600 Radom.

^{*)} Materiał prezentowano podczas XIV Międzynarodowej Konferencji Naukowo-Technicznej "Polimery i kompozyty konstrukcyjne – KOMPOZYT 2014", 7–10 października 2014 r., Istebna.

^{**)} Autor do korespondencji; e-mail: wojciech.kucharczyk@ uthrad.pl

Każdy materiał przewidziany do zastosowania w węźle tarciowym należy zbadać na stanowisku tarciowo-zużyciowym, w warunkach pracy zbliżonych do rzeczywistych, panujących w węźle tarcia, a uzyskane wyniki zweryfikować w trakcie prób eksploatacyjnych. Zastąpienie dowolnego elementu z tworzywa polimerowego elementem wytworzonym z innego gatunku polimeru musi być poprzedzone odpowiednimi badaniami. Jedynie w razie użycia tworzywa o zdecydowanie lepszej charakterystyce ($k_n \cdot v$ — iloczyn nacisku jednostkowego i prędkości poślizgu) można zaryzykować taką zamianę bez uprzednich specjalnych badań tribologicznych.

Zużycie ścierne materiałów polimerowych wykorzystywanych do celów konstrukcyjnych szeroko opisano m.in. w [5, 8]. Dość dobrze omówiono badania zużyciowe polimerowych materiałów niemodyfikowanych [9]. Znane są też prace dotyczące właściwości mechanicznych i termicznych modyfikowanych żywic fenolowo-formaldehydowych [10–12] i epoksydowych [13–15], w których modyfikatorami były m.in. włókna węglowe, nanonapełniacze oraz inne materiały polimerowe. We wspomnianych publikacjach nie podjęto jednak problemu odporności na zużycie ścierne kompozytów wytworzonych na bazie żywic epoksydowych modyfikowanych glinokrzemianami warstwowymi.

Celem naszej pracy było określenie wpływu składu kompozytów epoksydowych napełnianych glinokrzemianami warstwowymi na właściwości tribologiczne, a w szczególności na masową intensywność zużywania ściernego, w aspekcie ich możliwych zastosowań w węzłach tarciowych maszyn i urządzeń technicznych.

CZĘŚĆ DOŚWIADCZALNA

Materiały

Osnowę kompozytów stanowiły żywice epoksydowe: Epidian 52 oraz Epidian 601 sieciowane utwardzaczem aminowym Z-1 albo poliaminoamidowym o nazwie handlowej PAC – wyroby Zakładów Chemicznych Organika-Sarzyna w Nowej Sarzynie [16].

Do modyfikacji właściwości tribologicznych czystych żywic zastosowano niemodyfikowany Bentonit Specjal Extra, z 75 % mas. zawartością MMT (montmorylonitu), produkowany przez Zakłady Górniczo-Metalowe Zębiec w Zębcu [17].

Użycie bentonitu niemodyfikowanego nie pozwala na uzyskanie struktury nanokompozytowej. Ze względu na trudności technologiczne związane ze zdyspergowaniem płytek niemodyfikowanego bentonitu w żywicy epoksydowej, a w efekcie wytworzeniem struktury interkalowanej, a tym bardziej eksfoliowanej, przyjęto, że pakiety płytek MMT tworzą w osnowach epoksydowych aglomeraty w skali mikro, co jednoznacznie determinuje postać struktury kompozytu.

Przygotowanie próbek do badań

Zużycie ścierne badano w odniesieniu do próbek kompozytowych o składach wynikających z przyjętego planu badań doświadczalnych oraz, dla porównania, czystych żywic epoksydowych. Przyjęto następujące oznaczenia składów: j = 1-8 dla próbek kompozytowych oraz A–D dla nienapełnionych żywic epoksydowych.

Do żywicy epoksydowej dodawano niemodyfikowany bentonit w ilości stanowiącej 5 % lub 20 % udziałów objętościowych utwardzonego kompozytu. Mieszaninę napełniacza glinokrzemianowego z żywicą homogenizowano mechanicznie w ciągu 10 min, następnie do układu dodawano utwardzacze, odpowiednio, w ilości 13 ns Z-1 lub 60 ns PAC i ponownie całość mieszano mechanicznie przez kolejne 10 min. Mieszaninę wlewano do metalowej, dzielonej formy i pozostawiano w temp. 20 ± 2 °C do usieciowania. Gotowe próbki miały kształt prostopadłościanu o wymiarach $25 \times 15 \times 10$ mm (rys. 1).

Rys. 1. Próbki badawcze: a) schemat, b) przykładowe próbki po badaniach

Fig. 1. Tested specimens: a) structural drawing, b) samples after testing

Po upływie 24 h od zalania form wszystkie próbki wyjmowano i sezonowano w temp. 20 ± 2 °C przez 14 dni, po czym poddawano je badaniom tribologicznym.

Metodyka badań

Liczbę wykonanych prób oraz składy badanych próbek ustalono na podstawie przyjętego planu badań doświadczalnych [18] — ortogonalnej macierzy pełnoczynnikowej I rzędu typu 2³ z powtórzeniami.

Trzy zmienne niezależne x_i (parametry wejściowe), o dwóch poziomach wartości: -1 (dolny) oraz +1 (górny) stanowiły składniki kompozytu;

 x_1 – napełniacz glinokrzemianowy:

 $x_1(-1) = 5 \%$ obj.; $x_1(+1) = 20 \%$ obj.

 x_2 – materiał osnowy kompozytu:

 x_2 (-1) — żywica epoksydowa Epidian 52, x_2 (+1) — żywica epoksydowa Epidian 601;

x_3 – utwardzacz:

 x_3 (-1) — utwardzacz Z-1 (13 ns), x_3 (+1) — utwardzacz PAC (60 ns).

Funkcją odpowiedzi [18] obiektu badań *y* (parametrem wyjściowym) była masowa intensywność zużycia ściernego I_z (µg/s).

Badanie odporności na ścieranie przygotowanych próbek przeprowadzono za pomocą testera T-07 (rys. 2) produkcji Instytutu Technologii Eksploatacji — Państwowego Instytutu Badawczego w Radomiu. W określonych warunkach zalecanych przez producenta (tabela 1) dokonywano tarcia próbek o cząstki ścierne podawane grawitacyjnie do strefy styku.

T a b e l a 1. Parametry badań ściernych [19] T a b l e 1. Parameters and conditions of abrasive tests [19]

Parametr	Wartość					
Siła docisku próbki do przeciwpróbki	P = 44 N					
Prędkość obrotowa przeciwpróbki	<i>n</i> = 60 obr/min					
Twardość przeciw- próbki	78—85 ShA, według PN-EN ISO 868:2005					
Próbka wzorcowa	stal C45, twardość 190–200 HV					
Ścierniwo	elektrokorund nr 90 według PN-ISO 8486-2:1998					
Czas testu (liczba obro- tów przeciwpróbki)	$t = 1000 \text{ s} (N_b = 1000 \text{ obr})$					
XA7: -11	intensywność zużycia ściernego $I_{z'}$ µg/s					
WIEIKOSC Dadana	wskaźnik odporności na ścieranie K_b [-]					

Oznaczano masowe zużycie próbki stanowiące różnicę masy przed i po badaniu, po ustalonym czasie tarcia (określonej liczbie obrotów gumowanej stalowej rolki). Na podstawie wyników pomiarów obliczono zużycie masowe oraz średnią masową intensywność zużycia I_z (µg/s) wg równania (1):

$$I_z = \frac{(m_1 - m_2)}{t} \tag{1}$$

Rys. 2. Tester T-07 z zamocowaną próbką Fig. 2. Tester T-07 with a fixed specimen

gdzie: t — czas testu (N_b = 1000 obrotów, t = 1000 s), m_1 , m_2 — masa próbek, odpowiednio, przed i po badaniu ścieralności, oznaczona z dokładnością do 1 mg.

Określono także wskaźnik odporności na ścieranie K_b (względną odporność na ścieranie) poszczególnych próbek [19]:

$$K_{b} = \frac{Z_{ww} \cdot \rho_{b} \cdot N_{b}}{Z_{wb} \cdot \rho_{w} \cdot N_{w}}$$
(2)

gdzie: Z_{ww} – zużycie masowe próbki wzorcowej, Z_{wb} – zużycie masowe próbki badanej, ρ_w – gęstość materiału próbki wzorcowej, ρ_b – gęstość materiału próbki badanej, N_w , N_b – liczba obrotów (gumowanej rolki stalowej) drogi tarcia próbki, odpowiednio, wzorcowej i badanej.

WYNIKI I ICH OMÓWIENIE

Na podstawie wartości I_z obliczono wariancję intensywności zużycia ściernego próbek oraz odchylenie standardowe wyników, które wyniosło $\sigma = 20 \ \mu g/s$. W tabeli 2 zestawiono zapis zmiennych kodowych, składy próbek oraz średnią arytmetyczną intensywności zużycia ściernego (I_z) w odniesieniu do każdego doświadczenia w dwóch seriach prób. Graficzną interpretację wyników badań intensywności zużycia I_z przedstawiono na rys. 3.

Najmniejszą wartość I_z wykazują próbki kompozytowe żywicy epoksydowej Epidian 601, utwardzacza PAC

T a b e l a 2. Składy kompozytów oraz średnia masowa intensywność zużycia ściernego I_z T a b l e 2. Composite formulations and average mass intensity of abrasive wear I_z

-			0		5		~						
Numer próby	7, j	1	2	3	4	5	6	7	8	A B C		С	D
Poziom zmiennej kodowej x _i	<i>x</i> ₁	-	+	-	+	-	+	-	+				
	<i>x</i> ₂	-	-	+	+	-	-	+	+	nie dotyczy			
	<i>x</i> ₃	-	-	-	-	+	+	+	+				
Objętościowy udział napełniacza, %		5	20	5	20	5	20	5	20	0			
Rodzaj żywicy	rwicy E52 E601 E52		E6	501	E52 E601 E52 E		E601						
Rodzaj utwardzacza Z-1			PAC				Z-1 Z-1		PAC	PAC			
Średnia wartość Izśr (100	vartość I _{z śr} (1000 s), μg/s 274 300 393 29		292	351	352	250	243	201	264	291	241		

gdzie: - – poziom dolny zmiennej kodowej, + – poziom górny zmiennej kodowej, Z-1 – 13 ns, PAC – 60 ns, E52 – Epidian 52, E601 – Epidian 601.

Rys. 3. Srednia masowa intensywność zużycia ściernego I_z kompozytów (próbki 1-8) i utwardzonych żywic epoksydowych (próbki A-D)

Fig. 3. Average mass intensity of abrasive wear I_z of composites (samples no 1–8) and cured epoxy resins (samples A–D)

Rys. 4. Względna odporność na ścieranie K_b kompozytów (próbki 1-8) i utwardzonych żywic epoksydowych (próbki A-D) Fig. 4. Relative abrasion resistance K_b of composites (samples no 1-8) and cured epoxy resins (samples A-D)

i, odpowiednio, 5 oraz 20 % obj. bentonitu (próbka o nr 7 i 8), a także nienapełniona żywica Epidian 52 usieciowana utwardzaczem Z-1 (próbka A).

Wskazane próbki charakteryzują się także największymi, w swoich grupach: kompozytów i utwardzonych żywic, wartościami względnej odporności na ścieranie (K_b) (rys. 4, tabela 3).

T a b e l a 3. Względna odporność na ścieranie K_b T a b l e 3. Relative abrasion resistance K_b

U									
Numer próby j	1	2	3	4	5	6	7	8	
Średnia wartość wskaźnika K _b [-]	4,34	3,97	2,91	3,85	3,54	3,39	5,01	4,88	
Oznaczenie próbki epoksydowej	I	Ą	I	3	(D		
Średnia wartość wskaźnika K _b [-]	6,	24	4,	54	4,	45	5,28		

Różnica w intensywności zużywania ściernego kompozytów epoksydowych i nienapełnionych utwardzonych żywic epoksydowych wynika prawdopodobnie z odmiennej hetero- bądź homogenicznej struktury, a w konsekwencji — różnych mechanizmów zużywania.

W próbkach 7 i 8 (kompozyt Epidian 601 + PAC + bentonit) cząstki napełniacza prawdopodobnie nie są wyrywane poza obszar ścierania, ale są wtłaczane w utwardzony polimer; przejmują przy tym część energii, a elastyczna osnowa kompozytu stanowi warstwę ślizgową, ograniczającą ubytek masowy w procesie tarcia. W przypadku kompozycji utwardzonej żywicy Epidian 52 + Z-1, prawdopodobnie, pod wpływem siły tarcia następuje ułożenie łańcuchów polimerowych wzdłuż kierunku działania tej siły, co powoduje modyfikację struktury warstwy ścieralnej prowadzącą do jej anizotropii i skutkuje zwiększeniem odporności na zużywanie ścierne.

Przedstawione wyniki badań żywic epoksydowych napełnionych bentonitem mają charakter porównawczy. Nie dają odpowiedzi na pytanie jaka jest ich rzeczywista odporność na zużywanie ścierne, ponieważ nie uwzględniają pracy koniecznej do zużycia badanych próbek. W opisach dostępnych w literaturze zakłada się, że gęstości materiału w rdzeniu i w strefie tarcia są takie same, co prowadzi zarówno w rozważaniach teoretycznych, jak i w badaniach doświadczalnych do utożsamiania zużycia z usunięciem materiału pełnego (tak jak w przypadku odcięcia kawałka materiału rdzenia) o pierwotnych cechach fizycznych. Masie tego usuniętego materiału lub jego objętości przypisuje się określoną porcję energii rozproszonej podczas tarcia, co pozwala na określenie energetycznej miary odporności na zużywanie. W celu scharakteryzowania rzeczywistej odporności należałoby zastosować inną metodę badań [20, 21], uwzględniającą pracę konieczną do zużycia badanych próbek, z zastosowaniem zmodyfikowanego stanowiska badawczego, wyposażonego dodatkowo w układ umożliwiający pomiar współczynnika tarcia.

WNIOSKI

Największą odporność na zużycie ścierne wykazują kompozyty wytworzone na bazie żywicy Epidian 601 sieciowanej utwardzaczem PAC, zarówno z 5 % obj. (próbka 7), jak i 20 % obj. (próbka 8) zawartością glinokrzemianu warstwowego Bentonit Specjal Ekstra, a także nienapełniona żywica Epidian 52 utwardzona za pomocą Z-1 (próbka A). Natomiast dodanie glinokrzemianu warstwowego do utwardzonej żywicy Epidian 52 sieciowanej utwardzaczem Z-1 przyspiesza proces zużywania ściernego tego materiału, co oznacza, że taka modyfikacja jest w tym przypadku niekorzystna.

LITERATURA

[1] Greškovič F., Dulebová L., Duleba B., Krzyżak A.: *Eksploatacja i Niezawodnosc - Maintenance and Reliability* **2013**, *15*, 434.

- [2] Blau P.J.: "Friction science and technology", Taylor & Francis Group, Abingdon 2009.
- Bushan B.: "Introduction to tribology", John Wiley & Sons, New York 2013. http://dx.doi.org/10.1002/9781118403259
- [4] Capanidis D., Wieleba W.: "Badania tarcia i zużycia kompozytów polimerowych", Wydawnictwo Politechniki Wrocławskiej, Wrocław 2003.
- [5] Hasiser H., Hass W.: "Bedeutung der Gegenlaufflache fur die Dichtfunktion von PTFE Radialdichtung", Technische Universiät Hamburg, Hamburg 2000.
- [6] Kragelsky I.V., Alisin V.V.: "Tribology lubrication, friction and wear", Professional Engineering Publishing, Birmingham 2001.
- Trezona R.I., Allsopp D.N., Hutchings I.M.: Wear 1999, 225-229, 205. http://dx.doi.org/10.1016/S0043-1648(98)00358-5
- [8] Sui H., Pohl H., Schomburg U., Upper G.: Wear 1999, 224, 175. http://dx.doi.org/10.1016/S0043-1648(98)00306-8
- [9] Jia X., Ling R.: Tribology International 2007, 40, 1276. http://dx.doi.org/10.1016/j.triboint.2007.02.013
- [10] Kucharczyk W.: Eksploatacja i Niezawodnosc Maintenance and Reliability **2012**, 14, 12.
- [11] Kucharczyk W., Żurowski W.: Tribologia 2003, 190, 279.

- [12] Kucharczyk W., Przybyłek P., Opara T.A.: Polish Journal of Chemical Technology 2013, 15, 49. http://dx.doi.org/10.2478/pjct-2013-0067
- [13] Kucharczyk W.: Przemysl Chemiczny 2010, 89, 1673.
- [14] Bakar M., Kobusińska J., Szczerba J.: Journal of Applied Polymer Science 2007, 106, 2892. http://dx.doi.org/10.1002/app.26898
- [15] Bakar M., Kostrzewa M., Hausnerova B., Sar K.: Advances in Polymer Technology 2010, 29, 237. http://dx.doi.org/10.1002/adv.20192
- [16] Zakłady Chemiczne Organika-Sarzyna S.A. w Nowej Sarzynie, materiały marketingowe, Nowa Sarzyna 2003.
- [17] Zakłady Górniczo-Metalowe ZĘBIEC S.A., materiały marketingowe, Zębiec 2008.
- [18] Polański Z.: "Planowanie doświadczeń w technice", PWN, Warszawa 1984.
- [19] Instrukcja obsługi: "Tester do badania ścieralności T-07", ITE-PIB, Radom 1995.
- [20] Sadowski J.: "Zagadnienia dyssypacji energii w procesie zużywania tribologicznego", Wydawnictwo Politechniki Radomskiej, Radom 2008.
- [21] Żurowski W., Brzózka K., Górka B.: Wear 2013, 297, 958. http://dx.doi.org/10.1016/j.wear.2012.10.012

Otrzymano 27 X 2014 r.

W kolejnym zeszycie ukażą się m.in. następujące artykuły:

- P. Rościszewski, J. Sołtysiak, M. Łubkowska, Z. Walkowiak Nowe reaktywne żywice silikonowe
- N. Alvarado, L. Alegría, C. Sandoval, L. Gargallo, A. Leiva, D. Radic Synteza, charakterystyka i symulacje metodą dynamiki molekularnej dendrymerycznych poli(metakrylanów 3,5-diftalimidoalkilofenylu) (j. ang.)
- R. Śliwa, M. Oleksy, O. Markowska, G. Budzik, T. Dziubek, M. Zaborniak, J. Czech-Polak, M. Heneczkowski Kompozyty handlowych nienasyconych żywic poliestrowych z dodatkiem nanonapełniaczy Nanobent®.
 Cz. II. Nanokompozyty z udziałem krajowych nanonapełniaczy stosowane w technologii Vacuum Casting
- E. Piesowicz, I. Irska, K. Bryll, K. Gawdzińska, M. Bratychak Nanokompozyty poli(tereftalan butylenu)/nanorurki węglowe. Cz. II. Struktura i właściwości (j. ang.)
- M. Gaca, M. Zaborski Właściwości elastomerów otrzymanych z karboksylowanego kauczuku butadienowo-akrylonitrylowego z użyciem nowych substancji sieciujących (j. ang.)
- M. Kmiotek, D.M. Bieliński, M. Piotrowska, W. Jakubowski Olejki eteryczne jako biocydowe składniki wulkanizatów kauczuku naturalnego
- S. Fic, M. Kłonica, A. Szewczak Wpływ hydrofobizacji na trwałość powierzchni ceramiki budowlanej