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A theoretical model of hyperbranched polymerization
involving an ABf monomer

Part II. THE AVERAGE POLYMERIZATION DEGREE AND DISPERSITY INDEX∗∗)

Summary — A generalized theoretical model of hyperbranched polymeriza-
tion of an ABf monomer was used to calculate the weight average polymeriza-
tion degree (Pw) and dispersity index (DM) of the resulting hyperbranched
polymers. The monomer functionalities were f = 2, 4, or 6. The model derived
in Part I of the series and based on the Smoluchowski coagulation equation
was used. The monomer functional groups B reacted according to the first shell
substitution effect principle. Both, the weight average polymerization degree
and dispersity index were found to grow with conversion the faster, the
higher was the monomer functionality and the more positive was the substi-
tution effect.
Key words: hyperbranched polymerization, kinetic model, Smoluchowski
coagulation equation, substitution effect, functionality of the monomers,
weight average polymerization degree, dispersity index.

The new methods of polymer syntheses developed in
recent years fostered the search for polymer molecules of
various, but well defined non-linear structures. Among
them there were polymers consisting of highly branched
molecules, called the hyperbranched polymers. Certain
unique properties and typically one-step polymerization
technique made these products more and more desirable

in many applications. They could be used mostly as
modifiers, multifunctional crosslinking agents, drug or
gene carriers, nanofillers etc. [1—5]. The present day
state-of-the-art in the field have been summarized in re-
cent reviews [6—8].

A statistical model linking the size distribution of hy-
perbranched polymers with monomer conversion was
developed by Flory as early as in 1952 [9]. Since then,
and particularly since the beginning of the nineties, over
5000 papers on the synthesis and properties of hyper-
branched molecules appeared [7]. Many different me-
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thods of modelling the hyperbranched polymerization
have also been developed [10—13]. The hyperbranched
polymers can conveniently be obtained by polymeriza-
tion of an AB2 monomer (A and B stand for functional
groups or sites reacting with each other). A hyper-
branched polymer of somewhat reduced dispersity in-
dex, but also of reduced average molecular weight, is
obtained when some amount of compound B3 is present
beside the AB2 monomer. A kinetic model of these kinds
of polymerizations, which took into account the so-
-called first shell substitution effect, was presented in our
previous papers [14, 15]. The substitution effect models
the change in reactivity of a functional group located in
close proximity to another reactive group as this other
group reacts (site becomes substituted).

Hyperbranched polymers can also be obtained
from monomers having more than two B groups, i.e.
from monomers ABf (f > 2). Ishida et al. [16] have
shown that by using monomers AB4 or AB8 one ob-
tains aromatic polyamides of substantially higher de-
gree of branching (DB) than those prepared from the
AB2 monomer [16]. Monomers AB3 or AB4 were used
[17] to prepare polymers of DB higher than 0.67. The
degree of branching is a measure of branching perfect-
ness; it is zero for linear chains and equals to one for
an ideal dendrimer containing only branching and ter-
minal units [18].

In a theoretical analysis presented in our previous
paper (Part I) [19] a general kinetic model of polymeriza-
tion of an ABf monomer was developed. Of particular
interest there were the effect of monomer functionality
(f = 2, 4, 6) and magnitude of the first shell substitution
effect on the DB.

In this paper we extend the model and use it to calcu-
late the average degrees of polymerization (number and
weight averages, Pn and Pw, respectively) and their ratio,
i.e. the dispersity index DM = Pw/Pn.

KINETIC MODEL OF POLYMERIZATION

In our model all molecules present in the system at
any conversion degree of functional groups are coded
with an f-component vector s = (s0, s1,..., sf-1), where si

stands for the number of units with exactly i groups B
reacted. We disregard the possibility of intramolecular
reactions within one molecule. Thus, a monomer mole-
cule has the code {1, 0, 0,..., 0}, a dimer has the code {1, 1,
0,..., 0}, etc. The concentrations of molecules sharing the
same codes are [s0, s1,..., sf-1]. The concentrations are con-
veniently expressed as the numbers of molecules of a
given code divided by the total number of units. At the
beginning of a polymerization, when starting from the
monomer, one has [1, 0, 0,..., 0] = 1 and the concentra-
tions of any other species are zeros. Note that molecules
sharing the same code may differ in the structure, but
the reactivities of their corresponding functional groups
are necessarily identical.

The size distribution of molecular species can con-
veniently be described by the polynomial function:

(1)

The dummy variables x0 to xf-1 have no physical
meaning and are used merely to carry out mathematical
manipulations. The set of reduced rate constants κ1 to
κf-1 is defined by the relation:

; i = 1, 2,…, f-1 (2)

where: ki — contribution to the rate constant from a reactive
group at the unit with exactly i reacted B groups.

The actual rate constant of each elementary reaction
step is the product k*kAki where k* is a constant and kA is
related to the reactivity of A group only. The product
form of the rate constant is equivalent to the assumption
that the contributions from individual units to the acti-
vation energy are additive [20, 21]. Both k* and kA are in
eq. (3), below, absorbed into time units together with fk0
[22]. In other words, the relative rate constant κi mea-
sures the reactivity of a unit relative to that of the unit
with no B group yet reacted. This means that the mono-
mer unit as well as each terminal one linked through its
A group reacts via one of its B groups at the rate constant
equal to 1.

Smoluchowski-like coagulation equation describing
the time evolution of the size distribution function H
was derived in the previous paper [19]. It reads:

where:

(4)

is obtained by making the substitution:

(5)

in equation (1). Equation (5) should be understood as the
simultaneous substitutions: x0 = 1/κ1; x2 = 1/κ2; etc. The
functions , …, are defined thus:

(6)

In other words, the functions having dummy va-
riables as subscripts are the partial derivatives with re-
spect to the corresponding variable, calculated at the
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(reference) point defined by eq. (5). It is not difficult to
verify that, for example,

(7)

is the κ1 times the fraction of units in the whole system
having exactly one reacted B group.

The substitution eq. (5) makes all the dummy va-
riables from eq. (1) or from derivatives of H vanishing
and becoming functions of time only.

The functions with two dummy variables as sub-
scripts are the second derivatives of H with respect to the
respective dummies, again calculated at the reference
point given by eq. (5).

Smoluchowski-like equation can be used to extract
moments of distribution. Since the polymerization de-
gree (P) of the molecules sharing the code {s0, s1,..., sf-1} is
[19]:

(8)

the r-th moment of the distribution is

(9)

The number and weight averages of polymerization
degree are expressed in terms of the moments, namely
[22]:

(10)

(11)

and, as follows from the choice of concentration units:
M1 = 1. Thus,

(12)
and

Pw = M2 (13)
To illustrate the procedure of using Smoluchowski-

-like equation (3), let us develop the moment equation
(9) for r = 2 and f = 2 (monomer AB2). From eq. (8) we get
P = 2s0 + s1 – 1 and P2 = 4s0

2 + s1
2 + 4s0s1 – 4s0 – 2s1 + 1 =

4s0(s0 – 1) + 4s0s1 + s1(s1 – 1) – s1 + 1. Hence, in terms of
H functions, the result is:

(14)

Analogous expressions for the second moment of size
distribution in the polymerization of AB4 and AB6
monomers contain more and more terms and require
slightly tedious, but otherwise straightforward deriva-
tion.

The functions H with two subscripts that are needed
in the second moment expressions as well as those with
one subscript become available in the form of a set of
ordinary differential equations with respect to time as
the only variable. The set is obtained from (3) by its dif-
ferentiation twice with respect to dummy variables fol-
lowed by setting (x0, x1,..., xf–1) = (1, κ1

–1,..., κ–1
f–1). The

differential equation describing the function Hp is ob-

tained by simply setting (x0, x1,..., xf–1) = (1, κ1
–1,..., κ–1

f–1)
directly in eq. (3). The set of all differential equations
obtained by differentiation eq. (3) with respect to each
dummy variable plus that for Hp can be solved numeri-
cally for any set of κ values by using any commercial
software.

To express the results in terms of the conversion de-
gree we make use of the definition of concentration
units. Since, as follows from eq. (4), Hp is the number of
molecules per monomer unit, and each reacted B group
reduces the number of molecules by one, the conversion
degree, p is simply:

p = 1 – Hp (15)
Eventually, from eqs. (12) and (15) we get the familiar

[23]:

(16)

Finally, the dispersity index reads:

(17)

RESULTS AND DISCUSSION

We solved the sets of differential equations for func-
tions H with up to two subscripts. The sets were derived
for f = 2, 4, and 6. They consisted of 6, 15, and 28 ordinary
differential equations, respectively. The method of deriv-
ing the equation was outlined in Part I [19]. The equa-
tions were solved numerically as described in [10]. The
calculations were carried out for 5 sets of reduced rate
constants κi (i = 1, 2,..., f-1). The constants are the mea-
sures of the first shell substitution effect. The κ values
were calculated using eq. (2) by taking: ki = 3ki–1, ki = 2ki–1,
ki = ki–1, (random case), ki = 3ki–1/2, or ki = ki–1/3. In all
cases k0 = 1. The first two cases corresponded to the so-
called positive substitution effect, while the last two, to
the negative substitution effect. The physical meaning of
the first shell substitution effect modeled in this way was
the following. In the first case (ki = 3ki–1) the group B in a
unit with i reacted B groups was 3 times more reactive
than the same group in a unit with i-1 reacted B groups.
On the other hand, in the case ki = ki–1/3, each next B
group in a unit reacted 3 times slower than the previous
one. In the random case the reactivity of B groups did not
depend on the substitution degree of a unit.

The results of calculations are presented in graphical
form in plots illustrating the change of weight average
degree of polymerization of hyperbranched molecules
(Fig. 1) and their dispersity index (Fig. 2). In all plots
there are 5 curves corresponding to different substitu-
tion effects. The most top curve corresponds to the
strongest positive substitution effect (ki = 3ki–1) whereas
the lowest to the strongest negative substitution effect (ki

= ki–1/3). As can be seen, the character of relationships of
Pw or DM on conversion does not change qualitatively
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neither with increasing functionality nor with the mag-
nitude of substitution effect.

In general, the higher functionality of monomer and
the more positive substitution effect, both the weight
average polymerization degree and dispersity index
grow slightly faster with conversion.
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Fig. 1. Weight average polymerization degree (Pw) of hyper-
branched polymers versus conversion degree (P) of A groups in
polymerization of ABf monomers reacting with the substitu-
tion effects for: a) f = 2, b) f = 4, c) f = 6. In all cases the rate
constant of reaction between group A and the first B group in
a unit, k0 = 1. For the curves from top to bottom the rate
constant of the reaction of each next B groups was taken to be
ki = 3ki-1, ki = 2ki-1, ki = ki-1 (random case), ki = ki-1/2, and ki =
ki-1/3
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Fig. 2. Dispersity index (DM) of hyperbranched polymers ver-
sus conversion degree (P) of A groups in polymerization of ABf

monomers reacting with the substitution effects for: a) f = 2, b)
f = 4, c) f = 6. The curves are in the same order as in Fig. 1
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