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Viscosity effects in computer modeling of fiber spinning from 
crystallizing polymer melts

Summary —  Role of local viscosity in the dynamics of melt spinning of 
a polymer crystallizing under tensile stress are investigated using mathemati
cal modeling methods. The viscosity is assumed to be dependent on local 
temperature and degree of crystallinity along the spinning axis. Role of the 
polymer viscosity is studied for PET in the range from low to high spinning 
speeds. Strong effects of stress-induced crystallization on local polymer vis
cosity, resulting in crosslinking of chain molecules by arising crystallites, lead 
to limitation of the spinning speed, and a maximum of the take-up speed is 
predicted. Effects of the spinning-speed affected viscosity are analysed using 
simplified models of melt spinning and compared with the complete dynamic 
model. One concludes that the maximum of take-up speed predicted for high 
spinning speeds is a consequence of strong rheological effects of online ori
ented crystallization leading to gelation of the spun polymer by crystallites 
playing a role of physical crosslinks. Temperature effects on polymer viscosity 
are not responsible for the limitations of the take-up velocity.
Key words: mathematical modeling of melt spinning, fiber spinning from 
crystallizing polymer melt, molecular orientation, oriented crystallization, 
viscosity of crystallizing polymer.

Research and development projects on fiber spinning 
from polymer melts tend to use computer modeling 
methods combined with experimental investigations.
The main attention in the research is paid to structure 
development in the spinning line and to its control by 
the process parameters. Mechanical properties of syn
thetic fibers are directly related to their structure, i.e. mo
lecular orientation and crystallinity. Computational 
methods offer more economic and fast investigation tool.
Nevertheless, complexity of melt spinning with online 
crystallization, involving several interrelated pheno
mena, requires thorough investigations on modeling of 
the process.

In this paper we focus on the role of polymer visco
sity coupled with online stress-induced crystallization in 
the modeling of melt spinning. Rheology of the spun 
polymer melt is affected by thermal conditions along the 
spinning line, i.e. cooling or modifications of the cooling 
by online zone heating applied before the take-up point.
Spinning with high take-up speeds introduces stress-in-
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duced crystallization which considerably affects rheol
ogy of the spun melt [1, 2], for example in poly (ethylene 
terephthalate) (PET). The main rheological effect of crys
tallization is strong reduction in the melt fluidity domi
nating effects of the crystallization heat and, finally, so
lidification of the polymer before the glass transition.

In mathematical modeling, the temperature- and 
crystallinity-dependent viscosity influences the rheolo
gical equation coupled with the force and heat balance 
equations, as well as with kinetic equation of the online 
stress-induced crystallization [3]. The crystallization in
troduces strong nonlinearity to the system of spinning 
equations causing specific problems in the computa
tions.

Interrelation between kinetics of stress-induced crys
tallization and melt hardening by crystallization leads to 
ambiguities between the final and initial boundary con
ditions when solving the initial value problem for the set 
of spinning equations. The problem manifests in an ap
pearance of a maximum on the plots of the take-up ve
locity vs. initial tension shown in our earlier publication 
[4]. The ambiguity concerns relation between the fila
ment velocity at the take-up point and the initial tensile
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force in modeling of PET melt spinning with typical 
cooling, as well as with heating zone. Heating zone, ap
plied next to cooling one in the spinning, modifies crys
tallization in the spun filament. In this paper we take 
closer insight to the effects in modeling of the process 
with classical cooling by room temperature cross-blow 
of air below the spinneret outlet. Impact of heating zone 
we will discuss in a separate paper.

We analyze the sources of the maximum on the take- 
-up velocity vs. initial tension plots. Loss of monotonicity 
of the characteristics, which accompanies stress-induced 
crystallization at higher take-up speeds, introduces bi
furcation of the model solution. Understanding of the 
sources of the model bifurcation is important for the 
proper modeling and solving the spinning equations. 
Example computations are performed for PET.

THE MODEL

We consider a single-filament, steady-state model of 
melt spinning with predetermined temperature and ve
locity of the cooling air cross-blow in the cooling zone. 
Thin filament approximation allows us to neglect radial 
variation of axial velocity and temperature, and to re
duce the problem to one dimension —  the axial distance 
z from the spinneret outlet [5]. In standard spinning con
ditions, radial gradient of axial velocity can be neglected 
[6, 7]. Radial temperature gradient can be neglected 
when the filament is very thin or in the models consider
ing the temperature averaged over the filament cross- 
-section [3].

The model considers velocity profiles V(z) as control
led by the local spinning stress, and local polymer vis
cosity dependent on local temperature and crystallinity 
of the spun filament. Kinetics of crystallization of the 
polymer is controlled by local temperature and local ten
sile stress. The axial profiles of the filament temperature 
and tensile stress are controlled by the heat and force 
balance, respectively.

Point-by-point computation of individual dynamic 
effect is performed along the spinning axis z for velocity, 
V(z), temperature, T(z), tensile force, F(z), and tensile 
stress Ap(z), simultaneously with online stress-induced 
crystallization resulting in a crystallinity profile X(z).

Rheology

In the computations performed for PET we assume 
purely viscous stress in the spinning line, following all 
engineering models of the process for this polymer. The 
simplest rheological model of Newtonian viscous fluid 
with variable local viscosity q(z) is used. Axial changes 
of viscosity are admitted due to thin-filament assump
tion and neglected radial variation of temperature.

The non-Newtonian behavior of the spun melt is usu
ally neglected because the sensitivity of the viscosity to 
deformation rate is much smaller than its sensitivity to

local spinning line temperature or crystallinity [3]. A p
plicability of the Newtonian rheological model for melt 
spinning of PET was demonstrated by Sano [8] and Lin 
and Hauenstein [9].

Introduction of viscoelasticity to the dynamics of the 
process modifies the spinning line profiles [10— 12]. Vis
coelastic treatment should be considered for melt spin
ning of high molecular weight polyolefines, while spin
ning of aliphatic polyesters or polyamides can be ap
proximated by a purely viscous models [8, 9,11].

The axial velocity gradient of a Newtonian fluid in 
the spinning process is controlled by the local spinning 
stress Ap(z)

-Ap(z) (1)dV
dz 3r|(z)

where: T](z) —  local shear viscosity of the spun fluid.
The spinning stress is the local tensile force per local 

filament cross-section which can be expressed by the 
filament velocity V(z) from the following mass conserva
tion equation

7tR2(z)p(z)V(z) = W = const (2)

where: W — mass output, constant for a steady-state process, 
R(z) — filament radius, p(z) —  local filament density.

Using Eq. (2), the spinning stress is expressed by ten
sion F(z), and the filament velocity V(z)

. , , p ( z ) V ( z ) F ( z )

Ap(z) = -------w-------

Axial variation of the polymer viscosity is a function 
of axially variable filament temperature and degree of 
crystallinity

n(z) = n[r(z),X(z)] (4)

In the absence of crystallinity, X = 0, temperature de
pendence of the melt viscosity can be approximated for 
PET by the Arrhenius formula with a single, constant 
activation energy E„ independent on molecular weight 
[9,13]

TW/(T) = Cexp(E„/kT) (5)

where: C —  coefficient depending on the average molecular 
weight.

Eq. (5) provides good approximation in the tempera
ture range well above the glass transition point.

An alternative approximation for the temperature de
pendence of the melt viscosity is provided by the WLF 
equation, with the glass transition temperature T,, and 
shear viscosity q mcii(Ts) at the glass transition tempera
ture as the parameters [14]

'l/iiW/fT) C\meh [Tx ) exp -40.16-
T(z)-Tx 

51.6 + 74z)-7\, (6)

The Arrhenius and WLF approximations are com
pared in Fig. 1 for PET melt. The WLF formula signifi
cantly deviates from the Arrhenius dependence found 
experimentally for PET at the temperatures below the
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Fig. 1. Reduced shear viscosity (r|/r\0) (r|0—  initial viscosity 
at Tq = 573 K) vs. temperature (T) predicted by the Arrhenius 
(dashed line) and WLF (dashed-dotted line) formulae for PET 
melt. Solid line —  approximation used for present computa
tions

melting point. On the other hand, WLF predicts much 
steeper increase in viscosity near the glass transition 
point then the Arrhenius formula, less physical in this 
temperature range.

In the modeling for PET, we adopt the Arrhenius ap
proximation of melt viscosity for the temperatures above

as more correct for the spinning range. To account for 
the steep increase in melt viscosity near the glass transi
tion point, as indicated by WLF formula, we assume in
finite viscosity for the temperature range below Tg. The 
temperature dependence of melt viscosity adopted for 
computations is given by the solid line in Fig. 1.

Significant effects in polymer viscosity are assigned 
to crystallinity development, if present. In several 
mathematical models of melt spinning, rheological ef
fects of crystallinity have been accounted for by intro
ducing polymer viscosity dependent on the degree of 
crystallinity. Usually, local viscosity r\(z) of the spun 
polymer is expressed as a product of temperature de
pendent local viscosity of non-crystalline melt, q mc]t(T), 
and a function r)x(Y) representing effects of crystal
lization [3, 4,15,16]

n(z) = n™*[T(z)]r|x[X(z)] (7)

In present calculations we assume for the function 
representing the effect of online crystallization, a for
mula proposed by Ziabicki [17]. The formula is derived 
from a general crosslinking theory and it accounts for 
rheological effects of gelation by crystallization. The 
crystallites, nucleated and growing in the spun melt, 
form physical cross-links which interconnect polymer 
chains.

Пх(Х)
1

( 1 - X / X f
( 8)

where: X* denotes a critical degree of crystallinity, estimated 
to be in the range between 0.01 and 0.10, at which gelation by

crystallization leads to an infinite network, the exponent a  
equals unity for low molecular weight and 3.4 for high molecu
lar weight polymer.

At critical crystallinity, the polymer viscosity shows 
steep increase to infinity and the polymer solidifies. In 
present computations, a value of 0.10 is assumed for the 
critical crystallinity X*, and unity for the exponent a.

Kinetics o f crystallization

Progress in crystallization along the spinning line 
leads to an axial gradient of the crystallinity degree, 
dX /dz, which can be expressed by the ratio of local crys
tallization rate, X , and local velocity V

(9)
dz V

Crystallization of the polymer along the spinning line 
occurs under non-isothermal conditions and increasing 
tensile stress. Kinetics of the crystallization is described 
in a quasi-static approximation by the following Avrami 
type formula proposed for non-isothermal, stress-in
duced crystallization [18,19]

X = л(1 - x ) [ - ln ( l -  Х )](" ~ 1)/Я K “  у (10)

where: n —  Avrami exponent, usually an integer value be
tween unity and four, Kst —  rate function characterizing the 
kinetics of steady-state, oriented crystallization at temperature 
T and tensile stress Ap.

In this computations we assume the value of Avrami 
exponent n = 2 determined experimentally by Bragato 
and Gianotti [20] for crystallization of PET at higher va
lues of the amorphous orientation factor. The authors 
have found that Avrami exponent reduces from n = 4 at 
low amorphous orientation, fa„, < 0.13, to n = 2 at high 
orientation, > 0.18, in preoriented amorphous PET 
fibers.

The rate function Kst(T, Ap) has been proposed by 
Ziabicki [18] and it reads

X,v/(T.A/?) — К i,]ax  exp - 41n 2
D 1/2

expк г М ] a i)

where: Kmax, Tmax, Dj/2 — maximum value of the rate func
tion, temperature at the maximum, and the function half 
width at zero tensile stress, respectively; A —  oriented crystal
lization coefficient, a dimensionless empirical parameter which 
characterizes „effectivity" of the stress in stress-induced crys
tallization; fa — amorphous orientation factor controlled by 
local spinning stress Ap.

For PET we assume Kmax = 0.016 s '1, Tmax = 563 K, and 
D]/2 = 32 deg [21]. Experimental values of the coefficient 
A, estimated for PET, are in the range 200— 1000 [22, 23]. 
High values of A indicate strong effects of tensile stresses 
on the kinetics of oriented crystallization.

The amorphous orientation factor /„ increases from 
zero to unity with increasing in tensile stress from zero
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to infinity. Then, fa should be a non-linear function of the 
applied stress. The non-linearity should be accounted 
for in modeling of melt spinning processes which in
volve high stresses, in particular in high-speed melt 
spinning.

A correction to the linear stress-orientation law is pro
posed by a series expansion formula, derived for non- 
Gaussian chains with inverse Langevin statistics [4,24]

fa  (AP) = ■
A ll

o p t . 3
— ^ ' 7

V

■'opt
A n ?.

ДP
Л2 (  _ \3

1 C l>lи  
n A P7

J
A n ?

К u J

(12)

where: Copt —  stress-optical coefficient, An°„ — amorphous 
birefringence of ideally oriented chains.

Heat balance

The heat balance equation accounts for the convec
tive heat exchange between the filament and a gaseous 
surroundings (dry air), and for the heat of crystal
lization. It yields the following expression for axial gra
dient of the filament temperature

o r  av  о
—  = W  —  -  71/r pg + 2 n R p v . 
dz dz

(16)

where: W —  mass output, g —  acceleration of the gravity, 
R —  local radius of the filament, pzr —  local shear stress at the 
filament surface resulting from the air friction forces tangen
tial to the spinning axis.

From the boundary layer theory, the friction stress 
reads

P z r = \ c f ( R , V )  P x V 2 (17)

where: ps —  density of the air, Cf —  empirical coefficient 
dependent of the filament diameter R and velocity V [27,28].

C f  =0.37
/  x-0.61
' 2 R V  1

v ■'
(18)

Using ps = 1.202 • 10'3 g cm'3 and vs = 0.150 • 10 3 cm2 
s'1 for air at room temperature we have

p zr  = 6.99 -10 -10 V1.39

( 2 R ) 0.61 (19)

where: pzr is in N ■ cm'2, R in cm, and V in cm ■ s'1.

P c p
dT
dz

2a  * 
R V

(г -г ,)+ р д /г—
dz

(13) SPINNING EQUATIONS AND THE BOUNDARY 
CONDITIONS

where: Cp —  specific heat of the polymer, a* —  heat transfer 
coefficient between the filament and the gaseous surroundings 
at temperature Ts, R —  radius of the filament, Ah —  heat of 
crystallization per mass unit.

Heat produced in the bulk by viscous friction is ne
glected due to thin-filament approximation [3].

The heat transfer coefficient a *  is taken in the form 
derived by Kase and Matsuo [25,26] from empirical cor
relation between the Nusselt and Reynolds numbers

2 R a *
0.42

(  2RV }
1/3 ( W y  V

{  v ,  J

✓-
---

---
---

i__
__

__

1/6

(14)

Single-filament, steady-state melt spinning with on
line stress-induced crystallization is described by the fol
lowing set of four first-order differential equations for 
velocity V(z), temperature T(z), crystallinity X(z), and 
tensile force F(z) profiles

clV 1 pFV 
d z _ 3t|(7\X) W

(20)

= -0.42-^4-
dz Cp

1/6
1 + [Л ]

2’

Vv [w J p V\ л J к / V r > _
( T - T s ) + * t

( 21)

Local value of a* is affected by the local filament ve
locity V and the air cross-blow velocity Vy. It depends 
also on local filament radius R, as well as on heat con
ductivity Xs and kinematic viscosity vs of the air. For dry 
air at room temperature and atmospheric pressure (Xs = 
2.569 • 10‘4 J • cm '1 deg'1 s'1, vs = 0.150 ernes'1), the coef
ficient reads

a* = 2.034 • 10 - 4  ■
,1/3 8Vv s-|l/6

(2 R)
2/3 (15)

where: a* is expressed in }  ■ cm'2 deg'1 s'1, R in cm, V and Vy 
in cm ■ s'1.

Force balance

The force balance equation accounts for an inertia, air 
drag, and gravity. It leads to the axial gradient of the 
tensile force in the following form [3,10]

^  = «/fM„,[- ln (l-X )](" - ') / '1—  exp 
dz

\-X
V

-4ln2
47 2

exp te)

= О + 0.377фл.
dz [ dz V

-0.61 (w_
U p

.0.195
,1.195

( 22)

(23)

The factor/„ is defined by following equation
\2 / _ лЗ

fa C°P,P VF -  -  
1An ? W

C<>pt P 
A n ? W

CVFT CopiP
A n ? ,W

(VF) 2 (24)

The spinning equations are derived from the rheo
logical equation (1), conservation equations (2), (13), (16), 
crystallization equations (9), (10), and empirical coeffi
cients given by equations (11), (14), (18).

Steady-state melt spinning requires fixed boundary 
conditions. In real processes the fixed boundary condi
tions concern initial velocity, initial temperature, zero 
crystallinity (pure melt) at the spinneret output, z = 0
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V ( z  =  Q) =  V0 = ^ - - ,  T ( z  =  Q)  =  Tq \ X { z  =  0) = 0 (25)
яро^о

and fixed take-up velocity at the end of the spinning line

V ( z  =  L ) = V l (26)

where: do —  diameter of the spinneret orifice, po —  initial 
melt density.

We do not have any direct control of the tension force 
F on either boundary. The computational procedure ap
plied for the set of spinning equations (20)— (23) as
sumes an arbitrary value of the initial tension

F ( z  = 0) = F0 (27)

which with the initial conditions, for velocity, tempera
ture and zero crystallinity, equation (25), contributes to 
the initial value problem. The initial tension force is next 
adjusted in the procedure to the take-up velocity VL at 
the end point.

To solve the spinning equations, temperature of the 
surrounding air Ts, as well as the air velocity Vy should 
be specified for the cooling zone. The zone is assumed to 
be located next to the spinneret output, within the range 
0 < z < z\, and it is followed by the zone with quiescent 
air for z\ < z< L . Room temperature of the air is assumed 
in both zones:

simplified cases leading to the analytical solution of the 
dynamic equation (23). The simplest one is the case with 
neglected inertia force, in addition to neglected air drag 
and gravity, and the second one with the inertia force 
accounted for. When the inertia force is neglected to
gether with air drag and gravity forces, the axial gra
dient of the spinning line tension is zero and equation 
(23) reduces to

^  = 0 (34)
dz

The second case accounts for inertia force alone, at 
neglected air drag and gravity forces, and the dynamic 
equation (23) reduces to

dz dz
(35)

In the first case, without the inertia force, a constant 
tension along the entire spinning line is obtained

F(z) = F0 (36)

Then equation (20) for the velocity gradient simpli
fies to

d V

dz
P(z)

3ti(z)W
F0V (37)

and axial profile of the filament velocity for initial velo
city Vqreads

0 < z < z \ , Ts  = 293 K, Vy  *  0

Z| <  z  <  L .  Ts  =  293 K, V y  = 0 (28)

For dry air at atmospheric pressure we have

P , ^ ) = ^  (gem "3) (29)
T xk

'f  3 /2  ✓  ч
sk (7k ) = 2.0852 ■ К Г5 (j cm’ 1 s4  d eg-'J (30)

T , k  + 1 1 4

T512 / \
V v*(T \*)=4.16I8-К Г 5 — ^ -----  (cm2 s_l ) (31)7^+114 4 7

Equations (20)— (23) with the initial conditions given 
by equations (25), (27) and zone conditions given by 
equation (28) provide an initial value problem which can 
be solved by step-by-step computations along the spin
ning axis z.

We assume local density p and specific heat Cy of the 
polymer dependent on local temperature

p(z) = Po -  pi[T(z) -  273] (32)

C,,(z) =  Cpo + Cv i  [T(z) -  273] (33)

where: pp, pj, Cyo, Cy], are material constants.

SIMPLIFIED D YN AM IC EQUATIONS

Closed analytical solution of the melt spinning equa
tions can be obtained for some simplified cases with the 
air drag and gravity forces neglected. We consider two

Wz) = l/0 exp J fo _  f gP(z)dz 
3W h  n(z) (38)

From the above equation we obtain the following re
lation between the initial force Fp and the final take-up 
velocity Vi

РоИ)//.лVL = v u  =  L) =  V0 exp
3 w (39)

I i  is defined by
f L p(z) dz
Jo Po n(z) (40)

where: po —  melt density at the spinneret output, z = 0.
The integral I i  is controlled by the axial profile of the 

polymer viscosity r)[T(z), X(z)], strongly affected by the 
profiles of temperature and degree of crystallinity. 
Changes in the viscosity due to changes in temperature 
and crystallinity along the spinning line dominate by 
orders of magnitude changes in density, p(z). Then, as
suming p(z)/po = 1 for equation (40), 7/ can be very well, 
approximated by the integral of the inverse viscosity be
tween z = 0 and the final point z = L

(41)

which characterizes fluidity of the polymer within the 
entire spinning line.

In the case with inertia force accounted for, integra
tion of the dynamic equation (35) with the initial condi
tion given by equation (27) leads to the following rela
tion between local tension F(z) and velocity V(z)
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F(z) = F o  +  W[V(z) -  V 0] (42)

Then equation (20) for the velocity gradient reads

ТГ = Т Т ^ 7 [/7о + 1у('/ “ '/° )̂  (43)dz 3r|(z)W

and its integration with the initial velocity V0 leads to the 
following expression of the velocity profile

V (z )  =  Vo-
Fq -  WVq

Fq exp F 0 -  W V q Г p(z) d
3W J n(z)

0
-WVq

(44)

The relation between final velocity Vi and the initial 
force Fo reads then

^ o - ^ o _________
(45)F0 exp Po (Fq - W V 0 ) / l

Ж
-WVq

where the effects of viscosity are also represented by the 
integral Ii, similarly like in the case without the inertia 
force. When the product WVq in equations (44) and (45) 
is replaced by zero, then they reduce to equations (38) 
and (39) derived for the model without inertia.

In both cases, without and with inertia, axial velocity 
profiles V(z) are controlled by the integral of inverse vis
cosity between the initial point z = 0 and the current 
point z. The integral represents fluidity of the polymer in 
that part of the spun filament.

Equations (39) and (45) indicate, that the relation be
tween final take-up velocity Vi and the initial force Fq is 
controlled by the integral fluidity of the polymer, Ii, 
within the entire spinning line. Value of the integral is 
limited by the ratio of the position of the solidification 
point zs„i to the initial melt viscosity ratio "По

_ ' sn l r ' dx ^  <..sol

Ho JoqU)/T|o ho
(46)

where: the variable x = z/zso;.
Equation (46) is obtained from equation (40) assum

ing infinite viscosity of the polymer in the filament be
low the solidification point, z > zso/. The inequality ap
pears because viscosity of the polymer at any point of 
the spinning line exceeds the initial viscosity, r|(x) > t|q.

RESULTS AND DISCUSSION

Relations between take-up velocity Vi and the initial 
force Fo obtained from the simplified dynamic models 
are used to discuss an impact of spinning conditions on 
the filament rheology and spinning dynamics. This con
cerns in particular high take-up speeds which may lead 
to online stress-induced crystallization of the polymer.

Figures 2 and 3 illustrate VL vs. Fq plots computed 
from equations (39) and (45) for the models without and 
with the inertia force, respectively. Shapes of the plots 
are sensitive to the character of the dependence of the

Fig. 2. Take-up velocity (Vi) vs. initial force (Fq) predicted for 
PET from the simplified model without an inertia; solid lines
—  computed for l i  dependent on Fo at different values of A, 
dashed lines —  computed with the assumption I[/ = const. %
—  initial viscosity at Tq = 573 К

Fig. 3. Take-up velocity (VjJ vs. initial force (Fo) predicted for 
PET from the simplified model without an inertia. Lines — 
like in Figure 2

integral I i  on the F q. If we assume that the integral I; is 
fixed, independent on Fo, then Vi increases monotoni- 
cally to infinity with increasing F q, as illustrated in Fi
gures 2 and 3 by the dashed lines computed for different 
values of 1i- The assumption of fixed //_, independent on 
Fo, is unphysical for processes involving stress-induced 
crystallization where an increase in the initial force intro
duces fast oriented crystallization which strongly affects 
the viscosity profile [t|(z)]. Local temperature and local 
degree of crystallinity of the polymer are determined 
from the equations (21) and (22), considering appropri
ate cooling conditions specified for the process.

We will discuss the effects of the viscosity profile on 
two processes which differ in temperature treatment 
along the spun filament. The first one, with online cool
ing in the vicinity of the spinneret outflow is discussed 
below in this paper. The second one with online zone 
heating by a high-temperature chamber with hot air po
sitioned next to the cooling zone, and before the take-up 
point, will be discussed in a separate publication.
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Here we consider the melt spinning with cooling by 
the air cross-blow within a limited zone, located next to 
the spinneret, using both simplified models without and 
with an inertia, as well as full dynamic model repre
sented by equations (20)— (23) with appropriate bound
ary conditions. The computations are performed for PET 
assuming initial melt temperature Tq = 573 K, intrinsic 
viscosity of the polymer [т(] = 0.6, diameter of the spin
neret orifice do = 0.03 cm, and fixed mass output with the 
value W = 0.04 g /s  for each process. Cross-blow velocity 
of the cooling air Vу = 40 m /s, and temperature of the air 
Ts = 293 К are taken. The same temperature of air is 
assumed for the zone which follows the zone with the air 
cross-blow. Length of the zone with the air cross-blow is 
assumed to be 100 cm, and length of the entire spinning 
line L - 300 cm.

The computations indicate that the fluidity integral I i  
is significantly affected by the initial force, and it cannot 
be assumed as independent on Fq. The plots in Figures 4 
and 5 illustrate 1L vs. F0 relations computed for both sim
plified models using equations (21) and (22) at different 
values of the oriented crystallization coefficient A = 0, 
150, 300 and 500. Step-by-step computations of the tem
perature and crystallinity profiles have been performed. 
Values of I i  in the figures are reduced by the initial melt 
fluidity at the spinneret output, 1 /т|0-

The plots in Figures 4 and 5 show that the integral Ii 
decreases with increasing Fq. In the range of small values 
of Fq the decrease is rather moderate and results from 
more intensive cooling at faster flow of the polymer at 
higher tensions. At a critical value of Fq, sharp transition 
to much steeper relation, with more negative slope, is 
predicted. The transition is not seen at A = 0, at which 
oriented crystallization is switched off, and it appears at 
high enough values of the coefficient A. We find that the 
value of A should be above 100 to have such transition, 
and the transition shifts to lower values of Fq with in
creasing A.

computed for PET from the simplified model without an iner
tia at different values of A

Fig. 5. Reduced fluidity integral (t|oh) vs- initial force (Fq) 
computed for PET from the simplified model with an inertia at 
different values of A

Fig. 6. Crystallinity (Xj) of as-spun fiber vs. initial force (Fq) 
computed for PET using simplified dynamic model without an 
inertia at different values of A

Fig. 7. Crystallinity (Xj) of as-spun fiber vs. initial force (Fq) 
computed for PET using simplified dynamic model with an 
inertia at different values of A

Figures 6 and 7 show final degree of crystallinity X/, 
of the filament at the take-up point vs. initial tension Fq, 
computed for the simplified models without and with an
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inertia, respectively. Final degree of crystallinity, achiev
able in the process, is limited in our computations to the 
value of 0.35. We find that the sharp transitions of the I i  
vs. Fq plots to much more negative slope, as illustrated in 
Figures 4 and 5, coincide with an onset of oriented crys
tallization of the polymer at a critical value of Fq.

Cause of the sudden change to much more negative 
slope of the IL vs. Fq relation should be assigned to orien
ted crystallization, induced in the processes with initial 
force exceeding the critical value. This indirect effect of 
initial force on the integral fluidity Ii, via oriented crys
tallization, has significant impact on the spinning pro
cess and its dynamics.

A consequence of the online stress-induced crystal
lization and its effects on polymer viscosity is an ap
pearance of a maximum of the relationship between Vi 
and Fq. Such a maximum is predicted by both analytical 
formulae, equations (39) and (45), derived for take-up 
velocity VL from the simplified dynamic models. We 
find using these models that VL is a function of the in
itial force F0 and fluidity integral IL which is a function 
of Fq

Vl = Vl[Fq, IdFo)] (47)

The necessary condition for the maximum of Vi 
reads

d d V L  dl L  

dfo 3Fq 3/ д df-Q (48)

The maximum appears when variation of the fluidity 
integral I[jf with increasing Fq, satisfies the relation

d l i  d V , ,d V ,
—-  = ------- ! — -  (49)
df'o 3 F 0 d I L

Equations (39) and (45) indicate that partial deriva
tives in equation (49) are positive, dVL /  BFq > 0 and 
dVL /  dLi > 0. Then, in consequence, the derivative 
dli/dFQ  should be negative at the maximum, and high 
enough to compensate an increase in take-up velocity 
with increasing Fq at fixed value of 1̂ . Realization of 
such strong condition is provided by oriented crystal
lization induced in the filament at high initial force 
which strongly affects slope of the Ii vs. Fq relationship, 
as illustrated in Figs. 4 and 5.

The V i  vs. F q plots computed from the simplified 
models, equations (39) and (45), using integral fluidity 
II  affected by F q (due to stress-induced crystallization 
and cooling) are shown in Figures 2 and 3 by the solid- 
-line plots. The plots illustrate that strong reduction in 
the fluidity integral Ii, caused by stress-induced crys
tallization, disturbs monotonie character of the charac
teristics and leads to a maximum. The plots are calcu
lated at different values of oriented crystallization co
efficient A.

The maximum of VL appears in both models, with
out and with an inertia, but at different initial forces. In 
the case of the model without an inertia, the maximum

values of take-up velocity and initial forces correspond
ing to the maximum are much higher than in the case of 
more realistic m odel with an inertia. Nevertheless, 
maximum of take-up velocity appears in both dynamic 
models, and its value is the lower, the higher is the 
value of A.

In the case of no oriented crystallization, A = 0, the Vi 
vs. Fq plots in the Figures 2 and 3 remain monotonie. 
They does not show any maximum, although they de
viate from steep dashed-line plots computed for fixed 
values of 11 - The A = 0 plots correspond to a process 
without stress-induced crystallization, and illustrate the 
effects of viscosity resulting from the cooling itself. One 
concludes that the effects of cooling, isolated from the 
effects of oriented crystallization, are not strong enough 
to disturb monotonicity of the VL vs. Fq plots and intro
duce a maximum. The A = 0 plots in Figures 2 and 3 
traverse nevertheless the dashed-line plots predicted for 
fixed values of Ii„  from higher to lower, with increasing 
Fq as the consequence of cooling.

The refinement of individual effects in the dynamic 
of melt spinning, performed for the simplified models, 
indicates that the maximum of the take-up speed VL vs. 
Fq is a consequence of strong effects of oriented crystal
lization in the polymer viscosity. Our computations indi
cate that the maximum of Vi corresponds to the spin
ning process producing filaments with final degree of 
crystallinity of about 1—2 % at the take-up point. The 
effects discussed are not related to the heat of crystal
lization, which contributes rather to an enhancement of 
the polymer fluidity, but to cross-linking of the chain 
macromolecules by the crystallites in early stages of 
crystallization.

The complete dynamic model of melt spinning with 
online oriented crystallization, equations (20)— (23), also 
predicts the maximum of the Vi vs. Fq plots, as shown in 
Figure 8 for different values of the oriented crystal
lization coefficient A between zero and 500. The plots 
resemble those predicted from the simplified model with

Fig. 8. Take-up velocity (V[) vs. initial force (Fq) computed for 
PET from the complete dynamic model at different values of A
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the inertia force accounted for, shown in Figs. 2 and 3 by 
the solid lines. Positions of the maximum for each A in 
both models, with an inertia and the complete one, are 
very close. Values of the take-up velocity at the maxi
mum predicted in the complete dynamic model are 
higher. The discrepancy in the maximum values is re
lated to the air drag forces, not accounted for in the sim
plified model, which induce oriented crystallization at 
higher take-up speeds in the case of complete model.

The plots in Fig. 8 indicate again that stress-induced 
crystallization introduces limitation of the take-up velo
city. The maximum value of Vj, depends on sensitivity of 
the kinetics of oriented crystallization on the applied 
stresses, represented by the coefficient A. The higher is 
the coefficient, the lower is the maximum value of V̂ .

Fig. 9. Initial velocity gradient [(dV/dz)z=0] vs. take-up velo
city (VL) computed for PET from the complete dynamic model 
at different values of A

Figure 9 shows the plots of the initial velocity gra
dient at the spinneret output [(dV /dz)z=0] vs. take-up 
speed Vti computed for different values of A. The initial 
velocity gradient is determined from the initial force

dV 4 Fn
~ r  = -----? — (50)
dz lz=0 Зпс1цТ\о

The plots show bifurcation of the initial gradient of 
velocity at higher values of the take-up velocity at which 
stress-induced crystallization takes place. The bifurca
tion appears at lower take-up speeds for higher values of 
the coefficient A. The lower velocity gradients in the bi
furcation lead to amorphous fibers, while the higher 
once result in crystalline fibers. The bifurcation pre
dicted in the model is a consequence of strong increase 
in polym er viscosity due to stress-induced crystal
lization and gelation of the structure by crystalline 
crosslinking.
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