JAN LIBISZOWSKI, ADAM KOWALSKI, TADEUSZ BIELA, ANDRZEJ DUDA

Centre of Molecular and Macromolecular Studies Polish Academy of Sciences Department of Polymer Chemistry ul. Sienkiewicza 112, 90-363 Łódź, Poland e-mail: anduda@bilbo.cbmm.lodz.pl

Thermal stability of poly(L-lactide) prepared by polymerization of L,L-dilactide with Sn(II)-based initiators

Summary — α-Ester-ω-hydroxy terminated poly(L-lactide) [C₄H₉OC(O)-PLA-OH] was prepared by the ring-opening polymerization of L,L-dilactide using tin(II) 2-ethylhexanoate [tin octoate, Sn(Oct)₂]/BuOH system or tin(II) butoxide as initiators in a wide range of molecular weights (\overline{M}_n): from 10³ up to 7 · 10⁵. Thermal degradation behavior of C₄H₉OC(O)-PLA-OH was then compared with that of its esterified counterpart [C₄H₉OC(O)-PLA-OC(O)CH(C₂H₅)C₄H₉]. Thermogravimetric measurements versus \overline{M}_n revealed, as a result of $\overline{M}_n \rightarrow \infty$ extrapolation, the upper limit of thermal resistance of poly(L-lactide) (PLA). The onset temperature of the thermal degradation (*OT*) and the temperature of maximum degradation rate (*MDT*) of PLA are equal to 337 and 376 °C, respectively. Despite the deteriorating effect on the PLA molecular weight caused by *in situ* esterification of the hydroxyl chain ends with Sn(Oct)₂, largely unreacted in polymerization, certain improvement of PLA thermal stability due to this side reaction was also observed.

Key words: L,L-dilactide, poly(L-lactide), tin(II) butoxide, tin(II) octoate, polymerization mechanism, poly(L-lactide) esterification, thermal degradation.

Polylactide (PLA) exhibits useful mechanical properties accompanied by a biocompatibility and ability to undergo controlled degradation in the natural environment. Due to these features PLA finds recently wide applications both as a speciality biomedical polymer and as an environmentally friendly commodity thermoplastic, and fiber-forming material [1—6].

On the other hand, thermal stability of PLA is rather poor. For example, its temperature of the maximum rate of decomposition typically falls within the wide range from 240 to 370 °C and depends strongly on the end-groups structure, macromolecular architecture, molecular weight, and a purity of the sample [7—17]. It has been revealed that in the absence of O₂ and H₂O thermal degradation of poly(aliphatic ester)s proceeds *via* two major mechanisms: back-biting (unzipping), starting from the end-group reactive enough [equation (1a)], and/or main-chain carbon-oxygen bond [...-(CH₃)HC-OC(O)-...] splitting *via cis*-elimination [equation (1b)] [9, 10, 14]. Moreover, radical random chain scission has also been taken into account [9].

In the controlled, covalent (coordination-insertion) polymerization of cyclic esters, macromolecules fitted with hydroxyl end-groups are eventually formed [18, 19]. This occurs both in the metal alkoxide $[Mt(OR)_x]$ or metal carboxylate $Mt[OC(O)R')_z]$ (co)initiated processes (Scheme A).

Scheme A

However, as we report in the recently published papers [20—24], in the metal carboxylate coinitiated polymerization some additional end-groups also appear, namely the ester groups ...-OC(O)R', formed by esterification of ...-OH end-groups by the carboxylate ligands from Mt[O(O)CR']_z initiator [equation (2)].

$$x \operatorname{RO} \left(\begin{array}{c} O & CH_{3} \\ C & CH_{2} \\ CH_{3} \\ CH_{$$

$$x \operatorname{RO} \left(\begin{array}{c} O & CH_3 \\ H \\ C \\ CH_2 \\ CH_3 \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ CH_2 \\ CH_3 \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ H \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ H \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ H \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ H \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ H \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ H \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ H \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ H \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ H \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ H \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ H \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ H \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ H \\ CH_3 \\ H \\ O \end{array} \right) \left(\begin{array}{c} CH_3 \\ H \\ CH_3 \\ CH_3 \\ CH_3 \\ H \\ CH_3 \\ CH_$$

In Scheme A and equation (2) Mt = Zn, Sn(II), Al, Y, Sn(IV), Ti (alkoxides) or Mt = Sn(II), Zn (carboxylates); ROH stands either for H₂O, alcohol or hydroxycarboxylic acid.

The present paper firstly aims at reporting on the thermal stability of α -ester- ω -hydroxy terminated poly(L-lactide) [C₄H₉OC(O)-PLA-OH] prepared with tin(II) octoate and tin(II) butoxide in a wide range of molecular weights (\overline{M}_n); from 10³ up to $\approx 7 \cdot 10^5$. An additional effect, influencing thermal stability of the resulting PLA and related to the hydroxyl end-group esterification accompanying LA polymerization initia-

ted with the system tin(II) octoate/BuOH is also discussed.

EXPERIMENTAL

Materials

Tin(II) dibutoxide $[Sn(OBu)_2]$ was prepared in the two step synthesis according to [25]. In the first step $SnCl_2$ was reacted with CH_3OH , in the presence of $(C_2H_5)_3N$ as HCl scavenger. Resulting $Sn(OCH_3)_2$ was isolated and then reacted with C_4H_9OH in boiling toluene as a solvent. The $Sn(OC_4H_9)_2$ formed was finally crystallized from toluene, dried in vacuum, and distributed into the thin-walled vials.

Tin(II) bis(2-ethylhexanoate) [tin octoate, Sn(Oct)₂] purchased from Aldrich (95 wt. %) was purified as described in [20]. The amount of impurities ("acidic" protons) was decreased to 1.8 mol. % as determined from ¹H NMR spectrum [20].

L,L-Dilactide (LA) (\geq 99 %, Boehringer, Ingelheim, Germany), crystallized consecutively from dry 2-propanol and toluene, was purified just before use by sublimation in vacuum (10⁻³ hPa, 85 °C). The purified monomer was distributed into the glass ampoules equipped with breakseals.

Butyl alcohol (BuOH) (99.4 %, Aldrich) was dried with Na metal and distributed by vacuum distillation into thin-walled vials and sealed off.

2-Ethylhexanoyl (octanoyl) chloride (98 %, Aldrich) was degassed and condensed under reduced pressure $(3 \cdot 10^{-3} \text{ hPa})$ into the glass ampoule equipped with a break-seal and sealed off after freezing in liquid nitrogen.

Tetrahydrofuran (THF) (99 %, POCh, Gliwice, Poland) was kept over KOH for several days, then decanted and distilled from Na metal chips. Thus purified THF was stored over Na-K alloy and distilled under reduced pressure directly into the reaction vessel.

o-Dichlorobenzene (99 %, Aldrich) purified by distillation from CaH_2 was stored over CaH_2 and distilled under reduced pressure into the reaction vessel.

Pyridine (99 %, Aldrich) was kept over KOH for several days, then decanted and distilled under reduced pressure (80 $^{\circ}$ C, 1 hPa) from calcium hydride just before use.

Deuterated chloroform (99.5 % isotopic purity, Dr. Glaser, Basell, Switzerland) was stored over P_2O_5 and distilled before use.

Synthesis of hydroxy-terminated polylactides

α-Ester-ω-hydroxy polylactides [BuOC(O)-PLA-OH] were synthesized by the controlled ring-opening polymerization of LA initiated either with Sn(Oct)₂/BuOH $(\overline{M}_n < 10^4)$ or Sn(OBu)₂ $(\overline{M}_n > 10^4)$, in THF as a solvent at 80 °C. Polymerizing mixtures were prepared in sealed

controlled by LA and BuO- concentrations in the feed: 144.13 ($[LA]_0 - [LA]$)/ $[BuO-]_0 + 74.12$ (where 144.13 and 74.12 denote LA and BuOH molar masses, respectively). More detailed description of the polymerization procedure has been given in our previous works [26, 27].

Esterification procedure

Polylactide samples composed of the linear macromolecules fitted with one hydroxyl end-group [BuOC(O)-PLA-OH] were quantitatively esterified by a direct reaction with the octanoyl chloride at room temperature in dry pyridine used both as a solvent and HCl scavenger. A general procedure follows an example described below.

An ampoule containing 1 mL (0.95 g, *i.e.* 5.86 mmol) of octanoyl chloride and equipped with a breakseal was sealed to the reaction glass vessel (\approx 30 mL) containing 0.501 g (0.175 mmol) of BuOC(O)-PLA-OH of \overline{M}_n = 2870 (SEC — Size Exclusion Chromatography). Then it was evacuated below 10⁻³ hPa and 5 mL of dry pyridine was distilled in. The whole reactor was sealed off, the breakseal was broken and all components were mixed at room temperature. After 1 hour the resulting BuO(O)C-PLA-Oct was precipitated into a cold methanol, separated by filtration, washed with distilled water (in order to remove pyridine hydrochloride) and then with methanol. After drying 0.4 g (80 % yield) of the polymer with \overline{M}_n (SEC) equal to 3050 was obtained.

Comparison of ¹H NMR spectra (CDCl₃, 20 °C) of the starting BuOC(O)-PLA-OH and of the resultant BuO(O)C-PLA-Oct indicates complete transformation of the hydroxyl into the octoate ester end-groups [below in brackets are given chemical shifts (δ , in ppm), multiplicities of signals and their relative intensities].

$$\begin{array}{cccc} O & O \\ \parallel \\ CH_3CH_2CH_2CH_2O[CCH(CH_3)O]_{n-1}CCH(CH_3)OH \\ a & b & c & d & e & f & g \\ \\ & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

a (0.9, t, 2.46), *b* (4.12, m, 1.55), *c* (5.15, q, 32.12), *d* (1.58, d, 94.85), *e* (4.34, q, 0.82), *f* (1.47, d, 2.50), *g* (2.67, d, 0.85)

		0		O CH ₂ C	CH ₂ CH ₂ CH ₃
CH ₃ CH ₂	CH ₂ CH ₂ O[CCH((CH_3)	O] _{n-1} CCH(CH ₃)OCCH	<i>a</i> ′
а	b	С	d	$e f hCH_2$	CH ₃
					<i>a</i> "

a + *a*['] + *a*^{''} (0.85—0.95, three t, 32.80), *b* (4.12, m, 6 53), *c* + *e* (5.03—5.20, two q, 136.74), *d* (1.58, d, 470.75), *e* (4.34, q, 0.82), *f* (1.51, d, 13.35), *h* (2.33, m, 3.79) The corresponding \overline{M}_n values calculated from NMR spectra are equal to 2840 and 2950, being close to the given above values determined by SEC.

Measurements

Polarimetric measurements were performed with Perkin Elmer 241 MC polarimeter. The optical rotations (*or*) of the living polymerization mixtures were measured at 578 nm at room temperature. The instantaneous monomer concentrations were determined assuming additivity of the optical rotations of LA (*or_m*) and PLA (*or_p*), *i.e.*: [LA] = [LA]₀ (*or* - *or_p*)/(*or_m* - *or_p*).

SEC traces were recorded using LKB 2150 HPLC pump, two sets of TSK Gel columns (G 2000 H_{XL} and G 6000 H_{XL} or G 3000 H_{HR} and G 6000 H_{HR} with pore sizes $2.5 \cdot 10^2$ and 10^6 or $1.5 \cdot 10^3$ and 10^6 Å, respectively) at 20 °C. Wyatt Optilab 903 interferometric refractometer and MALLS Dawn F Laser Photometer, equipped with He-Ne laser emitting at 632.8 nm (both Wyatt Technology Corp., Santa Barbara, CA) were applied as detectors in series. The refractive index increments (dn/dc) were determined with Wyatt Optilab 903 interferometric refractometer and using DNDC.EVE v 5.20 program (Wyatt Technology Corp., Santa Barbara, CA). For LA and PLA dn/dc = 0.0310 and 0.0256 mL/g (CH₂Cl₂, 20 °C), respectively, were determined.

The number-average molecular weights \overline{M}_n of PLA were determined using a calibration method described previously for poly(ε -caprolactone) [27] and PLA standards prepared in our laboratory. The correct \overline{M}_n values of PLA can also be obtained after multiplying by 0.68 the \overline{M}_n determined with polystyrene standards, at least up to $\overline{M}_n \approx 2 \cdot 10^4$ g/mol, for the set of G 2000 H_{XL} and 6000 H_{XL} columns with CH₂Cl₂ as an eluent.

The actual number-average molecular weights (\overline{M}_n) of the deactivated and isolated PLA were occasionally determined with Knauer vapour pressure or membrane osmometers for $\overline{M}_n \leq 3.5 \cdot 10^4$ or $\geq 3.5 \cdot 10^4$, respectively, in dry methylene chloride. $\overline{M}_w / \overline{M}_n$ ratios were determined from the SEC traces.

 \overline{M}_n higher than 10⁴ was directly determined using MALLS Dawn F Laser Photometer and ASTRA v 4.70 program (Wyatt Technology Corp., Santa Barbara, CA).

¹H NMR spectra were recorded in deuterated chloroform as a solvent using Bruker DRX 500 operating at 500 MHz. Chloroform was used as an internal standard (δ = 7.26 ppm).

Mass spectrometric measurements were performed using Voyager-Elite (PerSeptive Biosystems, USA) time of flight instrument equipped with a pulsed N₂ laser (337 nm, 4 ns pulse width) and time delayed extraction ion source. An accelerating voltage of 20 kV was used. Mass spectra were recorded in the reflector mode. The matrix, 2,5-dihydroxybenzoic acid, was dissolved in purified THF (10 mg \cdot mL⁻¹) and the solution was mixed with the polymerizing mixture (monomer concentration in the feed: 2.0 or 1.0 mol \cdot L⁻¹) at 25:1 v/v ratio. NaI as cationizing agent was also added. The mixture was dried on a stainless steel covered by the gold metal target.

Molecular weights and their distributions were calculated from the recorded MALDI-TOF spectra by means of the computer program: Grams 386TM — version 3.4 (Galactic Industries Inc.).

Thermal stability measurements were performed using Hi-Res TGA 2950 Thermogravimetric Analyser (TA Instruments, USA), in a nitrogen atmosphere and heating rate of $10 \, {}^{\circ}\text{C/min}$.

RESULTS AND DISCUSSION

In the earlier works we have revealed, that in polymerization of ε-caprolactone (CL) [20, 21, 24] and LA [22] initiated by Sn(Oct)₂/ROH systems there is a variety of the end-groups in the resulting polyester macromolecules. Then we have shown [22, 23], that if the ratio of $[Sn(Oct)_2]_0/[coinitiating alcohol]_0$ is high enough, the large proportion or even almost all of the originally present ...-OH end-groups can be converted into the octoate esters. Indeed, if for example in bulk polymerization of LA the final molecular weight (\overline{M}_n) of PLA is equal to 10° , the complete conversion of -OH groups into ester groups will require 730 ppm (equivalent to $6.4 \cdot 10^{-3}$ mol \cdot L⁻¹) of Sn(Oct)₂, provided, that all of the available octoate groups in Sn(Oct)₂ are converted into the octoate end-groups. Thus, it could in principle be possible directly in the polymerization process to obtain the macromolecules of ROC(O)-PLA-Oct structure, where RO comes from the coinitiating alcohol.

Comparison of the thermal stability of esterified and non-esterified PLA-OH chains

In order to establish how ...-PLA-OH \rightarrow ...-PLA-Oct conversion could influence thermal stability of the polyester, we prepared PLA macromolecules of BuOC(O)--PLA-Oct structure by esterification of BuOC(O)-PLA--OH macromolecules with C₄H₉CH(C₂H₅)C(O)Cl. After purification of the resulting polymer by a series of dissolutions and precipitations this sample was studied by MALDI-TOF mass spectrometry.

Figure 1a shows MALDI-TOF spectrum of the starting PLA prepared with Sn(Oct)₂/BuOH initiating system. According to the results of ¹H NMR analysis given in the Experimental part this sample consists exclusively of BuOC(O)-PLA-OH macromolecules:

$$\begin{array}{ccc} O & O \\ \overset{\parallel}{}_{\mathbb{C}_{4}} \\ C_{4} H_{9} O[CCH(CH_{3})O]_{n-1} CCH(CH_{3})OH & (I) \\ \\ [BuOC(O)-PLA-OH (\mathbf{A})] \end{array}$$

Indeed, in MALDI-TOF spectrum the signals (marked by **A**), coming from this population of PLA,

dominate. However, expanded fragment of the spectrum reveals a power of MALDI-TOF method in polymers' analysis. Signals of the lower intensities were identified as corresponding to the following PLA macromolecules:

$$\begin{array}{c} O & O & O & C_4H_9\\ \square & \square & \square & \square\\ C_4H_9O[CCH(CH_3)O]_{n-1}CCH(CH_3)OCCH & (II)\\ & & C_2H_5 \end{array}$$

[BuOC(O)-PLA-Oct (**B**)]

$$\begin{array}{ccc} O & O \\ \parallel & \parallel \\ HO[CCH(CH_3)O]_{n-1}CCH(CH_3)OH \end{array} (III) \\ [HOC(O)-PLA-OH (C)] \end{array}$$

$$O O \\ \parallel \\ NaO[CCH(CH_3)O]_{n-1}CCH(CH_3)OH$$
(IV)
[NaOC(O)-PLA-OH(**D**)]

Mechanism of formation of **B** and **D** populations has been already discussed in our previous papers [21, 22, 24]. Population **D** appears as a result of proton and Na⁺ exchange. A qualitative estimation gives more than 90 mol % of macromolecules showing BuOC(O)-PLA- -OH (**A**) structure.

¹H NMR analysis of BuOC(O)-PLA-OH esterified with octanoyl chloride shows the presence of predominantly one population of macromolecules, namely BuO(O)C-PLA-Oct (**B**) (*cf.* Experimental part). In MALDI-TOF spectrum (Fig. 1b) the signals coming from **A** and **E** macromolecules are also seen.

$$\begin{array}{ccc} O & O & C_{4}H_{9} \\ & & \\ NaO[CCH(CH_{3})O]_{n-1}CCH(CH_{3})OCCH \\ & & \\ &$$

Their concentration (assuming proportional response) is below 10 mol %. Apparently, population **E** is a product of esterification of populations **C** and **D**. The presence of signals coming from chains **A** indicates that esterification was non-quantitative. Moreover, comparison of MALDI-TOF traces presented in Fig. 1 shows that the molecular weights and their distributions of nonesterified and esterified PLA samples do not differ appreciably. \overline{M}_n and $\overline{M}_w/\overline{M}_n$ values calculated from these spectra are equal to 2680 and 2860, and to 1.33 and 1.31, respectively.

Finally, samples analyzed above, being composed predominantly either of macromolecules BuOC(O)--PLA-OH or of BuOC(O)-PLA-Oct were studied by thermogravimetry. Result is shown in Fig. 2 — the difference in thermal stability is remarkable. Esterified sample is

Fig. 1. MALDI-TOF spectra (linear mode, NaI added) of: (a) poly(L-lactide) prepared by L,L-dilactide polymerization initiated with tin octoate/butyl alcohol system, (b) poly(L-lactide) prepared as indicated above and esterified with octanoyl chloride. All marked signals correspond to macromolecules cationized with Na⁺; the numbers following **A**, **B**, **C**, **D**, and **E** denote the degrees of polymerization of the poly(L-lactide) chains, the meanings of **A**, **B**, **C**, **D** and **E** — see text. Polymerization conditions: $[LA]_0 = 1.40 \text{ mol} \cdot L^{-1}$, $[Sn(Oct)_2]_0 = 0.04 \text{ mol} \cdot L^{-1}$; $[BuOH]_0 = 0.1 \text{ mol} \cdot L^{-1}$; THF solvent, 80 °C

much more resistant and exhibits the onset temperature of the thermal degradation (*OT*) and the temperature of maximum degradation rate (*MDT*) 115 °C and 112 °C higher, in comparison with these determined for the hydroxy-terminated PLA.

This result agrees with observation of Ikada who has already shown that acetylation of the hydroxyl endgroup in PLA-OH increases its thermal stability [7]. Although the reasons of such enhanced stability have not yet been studied in detail, it is highly possible that this phenomenon has the same origin as in polyacetals [28]. Blocking of terminal ...-OH group eliminates the possibility of the depropagation from the chain end by the unzipping mechanism [*cf*. equation (1a)]. In the case of PLA with the esterified hydroxyl chain ends thermal degradation proceeds most probably *via* the *cis*-elimination [equation (1b)], requiring much higher activation energy in comparison to that of the back-biting depolymerization from equation (1a). Neither unsaturated nor carbo-

Fig. 2. TGA and DTA traces of thermal degradation of: (a) poly(L-lactide) prepared by L,L-dilactide polymerization initiated with tin octoate/butyl alcohol system, (b) poly(L-lactide) prepared as indicated above and esterified with octanoyl chloride. For polymerization conditions see Fig. 1

xylic acid chain ends formed could start depropagation *via* back-biting. Therefore for the esterified samples *OT* and *MDT* are shifted into the considerably higher values range.

Results of thermogravimetric analyses performed for a series of BuOC(O)-PLA-OH samples differing in M_n show that their thermal stability increases with increasing molecular weight (Fig. 3a). Interestingly enough, above $\overline{M}_n \approx 4 \cdot 10^5$ dependencies of OT and MDT vs. \overline{M}_n tend to level off. Similar behavior of the thermal resistance of the hydroxy-terminated PLA has been reported by Cam [12]. Extrapolation of these plots into a direction of $M_n \to \infty$ (*i.e.* 1/ $\overline{M_n} \to 0$) results in OT = 337 °C and MDT = 376 °C (Fig. 3b). On the other hand, OT and MDTdetermined for the esterified polylactide [BuOC(O)--PLA-Oct] do not change practically with M_n (Fig. 3c) and are equal to ≈ 330 °C and 370 °C, respectively. Thus, the values obtained by extrapolation $(M_n \rightarrow \infty)$ for BuOC(O)-PLA-OH give an upper limit of PLA thermal resistance since for the infinite long chains the only possible mechanism of thermal degradation involves the main chain breaking [as for example depicted in equation (1b)]. The same mechanism operates for the esterified PLA chains [BuO(O)C-PLA-Oct] leading to the similar values of *OT* and *MDT*.

Fig. 3. Effect of molecular weight (\overline{M}_n) on PLA decomposition temperatures: onset temperature of thermal decomposition [OT, (o)] and temperature of the maximum rate of thermal decomposition $[MDT, (\bullet)]$. Dependencies for BuOC(O)--PLA-OH (*a*, *b*) and for BuOC(O)-PLA-Oct (*c*)

Influence of PLA-OH esterification in LA/Sn(Oct)₂/BuOH polymerizing system on its thermal stability

In order to check how direct esterification, by $Sn(Oct)_2$, of the hydroxyl end-group in the growing BuO(O)C-PLA-OH influences the microstructure and thermal stability of the resultant polymer, polymerization of LA was studied in a model system with a high starting concentration of $Sn(Oct)_2$ equal to 1.0 mol \cdot L⁻¹. Analysis of MALDI-TOF spectrum of the corresponding reaction revealed complete esterification of ...-PLA-OH end-groups (Fig. 4).

Fig. 4. MALDI-TOF spectra (linear mode, NaI added) of poly(L-lactide) prepared by L,L-lactide polymerization initiated with tin octoate/butyl alcohol system. All marked signals correspond to macromolecules cationized with Na⁺; the numbers following **B**, **F**, and **G** denote the degrees of polymerization of the corresponding poly (L-lactide) chains, the meanings of **B**, **F** and **G** — see text. Polymerization conditions: $[LA]_0 =$ 1.1 mol \cdot L⁻¹, $[Sn(Oct)_2]_0 = 1.0 \text{ mol} \cdot$ L⁻¹, $[BuOH]_0 = 4.1 \cdot 10^{-2}$ mol \cdot L⁻¹, o-dichlorobenzene solvent, 140 °C, polymerization time 5 h

In the spectrum presented in Fig. 4 three populations of periodically repeating signals, marked by **B**, **F**, and **G**, can clearly be distinguished. All of them correspond to PLA chains fitted with octanoate ester end-groups.

$$\begin{array}{c|c} O & O & C_4H_9\\ HO[CCH(CH_3)O]_{n-1}CCH(CH_3)OCCH\\ & C_2H_5\end{array} (VI)$$
[HOC(O)-PLA-Oct (F)]

$$\begin{array}{c} O & O & O & C_4H_9\\ \square & \square & \square & \square\\ NaO[CCH(CH_3)O]_{n-1}CCH(CH_3)OCCH & (VII)\\ & C_2H_5 \end{array}$$

[NaOC(O)-PLA-Oct (G)]

$$\begin{array}{c} O\\ BuOC-PLA-OH + Sn \begin{pmatrix} O & C_2H_5\\ OCCH\\ C_4H_9 \end{pmatrix}_2 \\ \downarrow \\ \dots - O-Sn - OCCH\\ C_4H_9 + C_2H_5\\ C_4H_9 \\ \downarrow \mathbf{A}/Sn(Oct)_2 \\ \downarrow \mathbf{A}/Sn(Oct)_2 \\ \vdots \\ BuOC-PLA-OCCH\\ C_4H_9 + H_2O\\ C_4H_9 \\ (\mathbf{B}) \end{array}$$
(3)

As reported in our previous papers [21, 22, 24], the population of chains **B** results from the reaction depicted in equation (3). Octanoic acid (OctH), formed in the al-koxide-carboxylate ligands exchange at tin atom in $Sn(Oct)_2$, acts then as an esterification agent giving in reaction with **A** esterified chains **B**.

Water, being a by-product of the esterification, acts further as the chain transfer/chain splitting agent giving rise of PLA chains fitted with the hydroxyl and carbo-xylic end-groups [HOC(O)-PLA-OH]. Esterification of HO(O)C-PLA-OH macromolecules, proceeding in the next step, results in formation of the population **F** [equation (4)]. The latter is then partially transformed during MALDI-TOF measurement into the population **G** *via* H⁺ \rightarrow Na⁺ exchange.

The expected molecular weight of PLA, formed in the conditions given in the caption for Fig. 4, calculated on the basis of the starting LA and BuOH concentrations, $\overline{M}_n = 144.13$ ([LA] – [LA]_{eq})/[BuOH]₀ + 74.12 where: [LA]_{eq} = 0.15 mol · L⁻¹ at 140 °C [29] is equal to $3.4 \cdot 10^3$, whereas determination on the basis of MALDI-TOF spectrum in Fig. 4 gives $\overline{M}_n = 1.2 \cdot 10^3$ ($\overline{M}_w/\overline{M}_n = 1.24$). This result can be explained by means of equations (3) and (4) — appearance of H₂O followed by chain transfer and chain splitting reactions directly leads to PLA molecular weight depression.

Despite the deteriorating effect of the *in situ* esterification on the molecular weight, certain improvement in PLA thermal stability could be expected. DTA trace recorded for PLA composed of two populations of macromolecules: BuOC(O)-PLA-Oct (**B**) and HOC(O)-PLA--Oct (**F**) formed during *in situ* esterification from the BuOC(O)-PLA-OH (**A**) chains shows a bimodal shape. The broader signal of lower intensity is characterized by OT = 198 °C and MDT = 241 °C, and the sharper, more intensive peak by OT = 269 °C and MDT = 283 °C (Fig. 5). For BuO(O)C-PLA-OH of the assumed $\overline{M}_n = 3.4 \cdot 10^3$ the following thermal decomposition temperatures could be expected: OT = 204 °C and MDT = 246 °C (as read from a plot in Fig. 3a), which are close to the thermal decomposition temperatures determined from the

Fig. 5. TGA and DTA traces of thermal degradation of poly(L-lactide) prepared by L,L-dilactide polymerization initiated with tin octoate/butyl alcohol system. For polymerization con-ditions see Fig. 4

broader, lower temperature signal in Fig. 5. However, approximately 50 wt. % of PLA sample shows slightly improved thermal resistance reflected in OT = 269 °C and MDT = 283 °C.

ACKNOWLEDGMENTS

The financial support of the Polish State Committee for Scientific Research (KBN), grant 7 T09A 144 21, is gratefully acknowledged.

REFERENCES

- Zhang X., Wyss U. P., Pichora D., Goosen M. F. A.: J. Macromol. Sci. — Pure Appl. Chem. 1993, A30, 933.
- Kharas G. B., Sanchez-Riera F., Severson D. K.: "Polymers of Lactic Acid" in: "Plastics from Microbes" (Ed. Mobley D. P.), Hanser Publishers, Munich, Vienna, New York 1994, p. 93.
- Hartmann M. H.: "High Molecular Weight Polylactic Acid Polymers" in: "Biopolymers from Renewable Resources" (Ed. Kaplan D. L.), Springer, Berlin 1998, p. 367.
- Gruber P., O'Brien M.: "Polylactides NatureWorks™ PLA" in: "Biopolymers", Vol. 4: "Polyesters III — Applications and Commercial Products" (Ed. Steinbüchel A., Doi Y), Wiley-VCH, Weinheim 2002, p. 235.
- Kawashima N., Ogawa Sh., Obuchi Sh., Matsuo M., Yagi T.: "Polylactic Acid LACEA" in: [4], p. 251.
- 6. Duda A., Penczek S.: *Polimery* 2003, **48**, 16.
- Jamshidi K., Hyon S.-H., Ikada Y.: Polymer 1988, 29, 2229.
- Zhang X, Wyss U. P., Pichora D., Goosen M. F. A.: Polym. Bull. 1992, 27, 623.
- 9. Kopinke F.-D., Remmler M., Mackenzie K., Möder M., Wachsen O.: *Polym. Degrad. Stab.* 1996, **53**, 329.
- Wachsen O., Reichert K. H., Krüger R. P., Much H., Schulz G.: Polym. Degrad. Stab. 1997, 55, 225.

- 11. Degee P., Dubois P., Jerome R.: *Macromol. Chem. Phys.* 1997, **198**, 1985.
- 12. Cam D., Marucci M.: Polymer 1997, 38, 1879.
- 13. Lee S.-H., Kirn S. H., Han Y.-K., Kim Y. H.: J. Polym. Sci.: Part A: Polym. Chem. 2001, **39**, 973.
- 14. Aoyagi Y., Yamashita K., Doi Y.: Polym. Degrad. Stab. 2002, **76**, 53.
- 15. Zhao J.-L., Cai Q., Jiang J., Shuai X.-T., Bei J.-Z., Chen Ch.-W., Xi F.: *Polymer* 2002, **43**, 5819.
- 16. Sodergard A., Stolt M.: Progr. Polym. Sci. 2002, 27, 1144.
- 17. Nishida H., Mori T., Hoshihara S., Fan Y. J., Shirai Y., Endo T.: *Polym. Degrad. Stab.* 2003, **81**, 515.
- Mecerreyes D., Jerome R., Dubois P.: *Adv. Polym. Sci.* 1998, **147**, 1.
- Duda A., Penczek S.: "Mechanisms of Aliphatic Polyester Formation" in: "Biopolymers", Vol. 3b. "Polyesters II — Properties and Chemical Synthesis" (Ed. Steinbüchel A., Doi Y), Wiley-VCH, Weinheim 2002, p. 371.
- 20. Kowalski A., Duda A., Penczek S.: Macromol. Rapid Commun. 1998, **19**, 567.

- 21. Kowalski A., Duda A., Penczek S.: *Macromolecules* 2000, **33**, 689.
- 22. Kowalski A., Duda A., Penczek S.: *Macromolecules* 2000, **33**, 7359.
- Libiszowski J., Kowalski A., Duda A., Penczek S.: Macromol. Chem. Phys. 2002, 203, 1694.
- 24. Duda A., Kowalski A., Libiszowski J.: *Polimery* 2000, **45**, 465.
- 25. Gsell R., Zeldin M.: J. Inorg. Nucl. Chem. 1975, 37, 1133.
- 26. Kowalski A., Libiszowski J., Duda A., Penczek S.: Macromolecules 2000, 33, 1964.
- Duda A., Florjańczyk Z., Hofman A., Slomkowski S., Penczek S.: *Macromolecules* 1990, 23, 1640.
- Dolce T. J., Grates J. A.: "Acetal Resin" in: "Encyclopedia of Polymer Science and Engineering", Vol. 1. (Ed. Mark H. F. *et al.*), New York, Chichester, Brisbane, Toronto, Singapore, Wiley-Interscience, 1985, p. 47.
- 29. Duda A., Penczek S.: Macromolecules 1990, 23, 1636.

Received 7 V 2004.