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Part I. DEGREE OF BRANCHING
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Summary —  A generalized theoretical model of hyperbranched polymeriza­
tion of an AB/ monomer is derived. The model is a classical mean-field one 
based on the Smoluchowski coagulation equation. The monomer functional 
groups В react according to the first shell substitution effect principle. It is shown 
that irrespectively of the monomer functionality (/), the number average m o­
lecular weight of hyperbranched polymers depend on conversion of A  groups 
in exactly the same way. Also the degree of branching, a parameter describing 
perfectness of polymer structure changes very slightly with increasing func­
tionality of the monomer.
Key words: hyperbranched polymerization, kinetic model, Smoluchowski co­
agulation equation, substitution effect, functionality of the monomers, degree 
of branching.

An interest in hyperbranched polymers has recently 
rapidly grown mostly because of the expected similarity 
of the behaviour of hyperbranched polymers to den- 
drimers and also due to potential applications of the hy­
perbranched polymers as polymer modifiers and multi­
functional cross-linking agents [1— 7].

In fact the idea of using multifunctional monomers in 
polymerization that produce highly branched, but not 
cross-linked material is known since the fundamental 
works by Flory [8, 9] who derived an explicit function 
for the size distribution in polymerization of an AB2 
monomer. More recently, the same problem was tackled 
by several authors, including the present one [10— 12]. 
This paper deals with the kinetic model of polymeriza­
tion of an ABf monomer with arbitrary /. In particular, 
the degree of branching in model hyperbranched poly­
mers is analyzed.

CODING OF MOLECULES

In order to follow the changes in the content of mole­
cules of different reactivity (rather than different size or 
structure) it is necessary to use a proper coding system. 
Since the monomer considered reacts with the "first shell

substitution effect”(cf. ref. [13]), a method of coding mole­
cules has to be applied, similar to that used in previous 
papers [15, 14]. Thus, each molecule has a code in the 
form of an /-component vector: s = (sq, sj,..., Sf.;), the 
entry S,- of which is the numbers of units with exactly i В 
groups already reacted. Note that the units with all /  
groups В reacted are not counted and that there is no 
one-to-one correspondence between a single vector and 
the structure of its corresponding molecule. One vector 
may describe the structure of many isomeric molecules, 
but they all share the same reactivity of their В groups. 
Examples of small molecules that are present in the sys-

{ 1, 0, ..., 0) { 1, 1, - . , 0} {2, 1, 1, ..., 0}

Scheme A. Examples of hyperbranched molecules and their 
corresponding codes
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tem and their corresponding composition vectors are 
shown in Scheme A. Only acyclic molecules are consi­
dered in this paper.

T H E  S M O L U C H O W S K I - L I K E  C O A G U L A T I O N  E Q U A T I O N

The original Smoluchowski equation [16] is in fact an 
infinite set of differential equations describing the rates 
at which a molecule consisting of a certain number of 
identical units (an i-mer) is formed out of two matching 
smaller components and the rate at which this molecule 
vanishes from the system in reactions with other mole­
cules. All reactions are considered to be the second order 
reactions and the rate constant for all reactions between 
the same reactive groups are the same [13]. Analogous 
rate reactions, but with different reaction constants for 
each type of unit can be written for polymerization of an 
ABf monomer. From the sum of rates of all possible reac­
tions, at which an s molecule is formed, the rates of reac­
tions are subtracted, at which this molecule is eliminated 
from the system. All the rates are products of appropri­
ate rate constants and concentrations. To write down all 
these rates is quite tedious an operation, but otherwise it 
is straightforward. Then, the product of dummy vari­
ables multiplies the resulting rate equation:

a:()"(K|Xi )  ... (Ку_| (1)

where:

к. =
fka

г = 1,2, H (2)

is the relative rate constant describing the ratio of the 
reactivity of В groups in the unit with i groups already 
reacted (hi) and the reactivity of В groups in a terminal 
unit (or monomer) (k0).

Finally, the rate equations for every s; are summed 
up. After some elementary algebraic operations one ob­
tains the following Smoluchowski-like equation:

Э Я  , ,  ,  ЧЭ Я  , ЧЭ Я  , . Э Я  Э Я
— Я  (K j.^ ) +  (к 2х 2) + . . . +  (Ку_|л:^_1) +

от ох„ dx, °х/-г dxf _l

„  ЭЯ , .ЭЯ , .Э Я  (3)-я . х0 —  +  (к ,х , )  —  +  ... +  (k / . , jc/ . i) :
Эх, Эх. Эх7-1 .

Я (Я , + Н Г +... + Я

where the counting (generating) function H, containing 
all information about the distribution of concentrations 
of all molecules, is defined thus:

h ($Q,xl,...,x f _bT) = ^ T  > s / - i ] x o ° (K iX [)'ę‘ ...

*>='*, =0 -V-|=0 (4)

••• (T /-!* /-!)  /_l

and the brackets are used to denote the concentration of 
the molecules sharing the same code. The concentration

is conveniently expressed in terms of the number of 
molecules sharing the same code divided by the total 
number of units in the system. The reduced time т is the 
actual time multiplied by fk0. The other symbols used in 
equation (3) are: Hp is the function H in the special refer­
ence point: [x0, x j , . . . ,  Xf_1} = { l ,  K ]- 1 ,...,  K f_|- 1 ] where the 
product involving dummy variables (x;) vanishes from 
eq. (4) and

H p  =  H !,(%) =  ^  [•S'oj5 i>•••>■5'y_i] (5)
.V„ = l .V|=() -Vy_|=0

Note that, with the concentration units adopted, 
Hp(0) = 1 and 1 /H p is the number average polymeriza­
tion degree in the system. The functions H x are the par­
tial derivatives of H  with respect to х,- (г = 0, 1, ..., / - 1), 
also calculated at the reference point (they are functions 
of time, only).

C O N V E R S I O N  D E G R E E

As already mentioned, the Smoluchowski-like equa­
tion (3) describes the time evolution of the entire molecu­
lar size distribution in the polymerization system. All 
molecular parameters become available by solving ordi­
nary differential equations that are derived from eq. (3). 
Here we demonstrate the methods of extracting the con­
version degree, number average polymerization de­
grees, and the modified degree of branching.

The conversion degree (p) is defined differently than 
in the original works of Flory [9] or Ziff [17]. It is the 
fraction of all A groups that have reacted. Thus, p varies 
from 0 to 1, not from 0 to l / / a s  in the original definition 
by Flory.

The conversion degree can be calculated by making 
use of the definition of concentration units. Since, as fol­
lows from eq. (5), Hp is the number of molecules per unit, 
and one reacted В group reduces the number of mole­
cules by one, the conversion degree is simply

P = l - H p (6)

Hp is obtained directly from eq. (3) by converting the 
latter into the ordinary differential equation. This is done 
by substituting (x0, xj,..., хм ) by (1, K }- 1 , . . . ,  _1 ] in all
functions. Then eq. (3) becomes:

H = - h (Hx + H + . . . + H x )  (7)

Similarly, the functions on the right-hand-side of eq. 
(7) are available by solving the system of differential 
equations obtained by differentiating eq. (3) with respect 
to every dummy variable followed by substituting (x0, 
X!,..., xH ] by [1, K f1,..., км -1).

The reader might wish to verify that:

K = ~ H PH xB (8)

and H Xi = - K tH p(Hx ~ H X i ) (9)

for: i = 1, 2 , . . . , / - 1.
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Further differentiation of partial derivatives — 
with respect to dummy variables followed by 
evaluating their functional forms in the reference point 
(1, Ki-1, ..., K f.f1) yield more ordinary differential equa­
tions with respect to time for the functions such as, e.g. 
H Xo , that are needed for calculating weight-average 
polymerization degree via moments of size distribution 
and will not be considered in this paper.

MOMENTS OF SIZE DISTRIBUTION

Let the molecule s = (s0, s Sf.f) has polymerization 
degre*e (P). The relation between the code numbers and 
the size P is straightforward. As one can easily verify, 
any hyperbranched molecule of size P prepared from 
AB  ̂monomer has P (f-  1)+1 unreacted В groups. On the 
other hand, the number of free В groups is sq/Ч  s-[(f-1) + 
...+ syr_!. Hence,

P  = ( f ~  I)-' (*„/ + *,(/" 1) + -  + V i ) - 1 (10)
The k-th moment of size distribution is defined thus: 

M k — ^  [ v s p  --iSf-ilP (11)
\„= l л, =(1 ®/-i=0

where P is given by eq. (10) and the square brackets 
denote the concentration of the molecules sharing the 
same set of code numbers.

Note that the zero-th moment is just Hp =1 /P n. The 
first moment is the sum of all units in the molecules 
divided by the total number of units (cf. the definition of 
concentration units), hence, M] = 1, and the second mo­
ment M 2 is the weight average polymerization degree in 
the system, Pw. It is not difficult to see that components 
of the sum in eq. (11) for к = 1 and 2 have the form S; [s0, 
si,..., sjlj] and si Sj [sg, sp ..., s^ ], respectively (i, j  = 1, 2, 
. . . , / -  1). These products are expressed by к f lH  and 
K~i1K~i 1H x x , respectively.

The striking conclusion is that the number average 
degree of polymerization is given by the familiar equa­
tion [9,14,15]:

in spite of the number of В groups in ABf  monomer (/), 
provided the conversion is expressed as the fraction of A 
groups that have reacted [cf. eq. (6)].

The time or conversion evolution of the weight aver­
age polymerization degree does depend on /, but this 
analysis will be dealt with in a forthcoming paper.

DEGREE OF BRANCHING

„The degree o f branching (DB) in hyperbranched 
polymer molecules was introduced (cf., e.g. ref. [18]) as a 
measure of their branching perfectness. For the most 
common AB2-type polymers it was defined as twice the

0,0 0,2 0,4 0,6 0,8 1,0
P

0,0 0,2 0,4 0,6 0,8 1,0
P

0,0 0,2 0,4 0,6 0,8 1,0
P

Fig. 1. Degree of branching (DB) vs. conversion (p) of A 
groups in polymerization of ABf monomers for f  = 2 (a), 4 (b) 
and 6 (c). In all cases the rate constant of reaction between 
group A and the first В group in a unit, ko = l .  For the curves 
from top to bottom the rate constant of the reaction of each next 
В groups was taken to be k{ = 3k{-i, ki = 2к^ , ki = к (random 
case), ki = ki-i/2, and ki = ki-i/3

number of branching (dendritic) units, divided by the 
total number of units in the system. The degree of 
branching should be zero for linear polymers and equal 
to one for a perfect dendrimer. The DB is the quantity 
that can be relatively easily evaluated by NMR spectro­
scopy.

In the random polymerization of an АВг monomer 
(i.e., in the system where monomer reacts with no sub­
stitution effect) the branching index grows linearly with 
conversion of A  groups and reaches V 2 at p approach­
ing 1. The DB of AB2 polymer molecules can be in­
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creased by using a monomer reacting with positive sub­
stitution effect, i.e., the monomer where the second В 
group reacts faster than the first [10].

For /  higher than 2 the definition of the DB was pro­
vided by Holter et al. [18]. In terms of the symbols used 
in this paper, the degree of branching is simply ex­
pressed as

DB = ---------------- ---------------------------- (13)

/=I

The results of calculation of the DB for monomers 
AB2, AB4, and АВб are presented in Fig. 1. The curves 
representing the change of the degree of branching with 
conversion of A  groups were obtained assuming all 
В groups to react at the same rate (middle curve in each 
plot, random reaction). The curves just above the mid­
dle one, and the highest, were obtained by taking every 
next В group to react twice or three times faster that the 
"previous" group, respectively (positive substitution 
effect). The curve just below the middle one and the 
lowest were obtained taking the negative substitution 
effect, where each next В group in the unit reacts two or 
three times slower than the previous one, respectively. 
As one can see, in all plots, the degree of branching 
linearly depends on conversion and the limiting degree 
of branching at full conversion slightly decreases with 
functionality /. This last conclusion agrees with publish­
ed data [18].

It seems worth pointing out that with the present 
model it is not necessary anymore to calculate the degree 
of branching to assess perfectness of branching. With 
concentrations of units of different substitution degree 
that are available from the present model at each stage of

reaction, one can easily  verify  the course o f any real p o ­
lym erization  process in v o lv in g  AB^ m o n om er.
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