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Conformational characteristics of polymeric chains with various 
degrees of rigidity

Summary — A simple model based only on steric constrictions of chain mo
lecules is used to describe the conformational characteristics of polymer 
chains endowed with various degrees of rigidity. Tire effect of rigidity of 
bond rotations was studied in terms of the model in relation to chain mole
cule size; a rigidity criterion was thus obtained, based on the width of the in
terval of rotational angles. Other results suggested the scaling law between 
the size of the chain and the number of monomers to become modified with 
the degree of chain rigidity. Examples of scaling behavior are discussed. An 
additional parameter, helicity, which corresponds with the average rotation 
angle, is presented as helpful in understanding the structural characteristics 
of polymer chains.
Key words: rigidity of polymer chains, conformational characteristics, scal
ing law, helicity.

Tire conformational characteristics of the polymeric 
chains that constitute a specific material play a basic 
role in understanding their physical properties and 
structural characteristics [1]. As generally recognized, 
such conformational characteristics are determined by 
the rigidity and geometric characteristics of the covalent 
bonds that constitute the chain backbone, and by the re
latively weak forces between and within the chains, 
different from the strong covalent forces that hold them 
as a single macromolecule [2 ].

However, because of their characteristic large lengths, 
monomer-monomer interactions along chains are stron
gly influenced by steric impediments and chain con
strictions, and molecular potentials routinely used to 
describe very short chains are not generally adequate to 
describe the collective behavior of monomers in large 
chains. Accordingly, we have recently proposed a sim
plified model to obtain the conformational characteris
tics of polymeric chains based only on the steric constric
tions between monomers [3]. The model predicts chain 
conformations by fixing bond lengths and angles, and 
by restricting the rotation angle to a previously determi
ned interval associated to the angular displacements 
allowed by the steric constrictions of the considered 
chain. We demonstrated how strongly the amplitude of 
the rotation angle between monomers affected the di
mensions of the chain, and a direct relationship between

1 Instituto de Fisica, UNAM, Apdo. Postal 1-1010, Queretaro, Qro., 
76000, Mdxico.

2 Doctorado en Ingenieria, Facul tad de Ingenierfa, Universidad 
Autónoma de Queretaro, Cerro de las Campanas s/n, Queretaro, 
Qro., 76010, Mexico.

this angular amplitude and the backbone rigidity was 
established.

In the present work, other aspects of the effect of the 
backbone rigidity on the conformational characteristics 
of chains are considered. A relationship between the 
•scaling law for the radius of gyration as a function of 
the number of monomers and the chain rigidity is obta
ined. We show also that, for the same rigidity, the value 
of the average rotation angle between monomers, here 
named helicity, introduces a proportionality constant 
into the aforementioned law.

GENERAL DESCRIPTION OF THE MODEL

In our model we estimate polymer conformations by 
the basic steric constrictions between the monomers of 
the considered chains. This is achieved by limiting the 
rotation angle of any bond in the chain to a restricted 
interval [cp,„ cp,2], or equivalently [cp„ - Дф, ф„ + Дф], asso
ciated with short range interactions between the neigh
boring groups. Such angular restriction would represent 
the best fit to specific experimental situations, but in 
any case, the angular interval considered is included 
into the widest one associated with bond rotation in the 
very short chain (less than five monomers). Long-range 
interactions are considered by keeping apart any two 
backbone atoms in the chain by more than a characteri
stic contact distance Dc.

As shown schematically (Fig. 1), any particular chain 
is represented by the set {/,) of bond vectors, pointing 
from atom i-1 to atom i within the chain backbone. As
sociated with each bond vector a pair of unit vectors,
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Fig. 1. Schematic representation of the bond vectors and an
gles used to calculate our chain conformations

n, and c„ perpendicular to each other and to are intro
duced;

и, =
sin 0, (1 )

where: 0 , ist the i-th bond angle.

ci = x 1. (2)
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Fig. 2. Radius of gyration fo r  bond chains with (1) 50 0  and 
(2) 1000 monomers. The dihedral angle interval between 
consecutive monomers, Дф, is varied between 0 and n, while 
Ф„ is kept fixed  at n/3

fixed ф„ and varying Дф. It is evident from Fig. 2 that 
the size of the chain molecule reduces steeply for values 
of Дф between л/12 and n / 3 .  For values of Дф larger 
than n / 3 ,  size variations are greatly reduced. Rigidity 
regimes can be separated, through the interval width 
for bond rotations; according to our results, high rigidi
ty is obtained at Дф < л/12, semi-rigidity is obtained at 
л/12 < Дф < n / 3 ,  and the flexible regime occurs at Дф > 
n / 3 .  Many examples of chains in the solution are found 
in the literature for the flexible and the semi-rigid cases 
of chains [4, 5], the highly rigid cases are mainly asso
ciated with highly ordered fibers and some biological 
chains [6 , 7].

A set of computer experiments were performed 
aimed at obtaining the radius of gyration as a function

ц  is perpendicular to the plane formed by Z,_i and and 
{L , c j , ni ( is a right-handed basis of unit vectors.

Tire Z,hl vector is generated by:

7; +1 = -  cos 01+1 /,■ + sin 01+, (cos cp. Cj + sin ф,п,) (3)

where: ф, is a random angle chosen within the interval /ф,„ 
Vaf

in our calculations, the first bond is directed along 
the positive z-axis, and the second one, restricted by the 
fixed bond angle 0„ is chosen to lie in the xz-plane. All 
other bonds are constructed by randomly selecting a ro
tation angle between фп and ф/2, and by checking that 
distances from the i + 1  atom position to the first i posi
tions are larger than Dc.

C7I
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RESULTS AND DISCUSSION

Reproduced from [3], Figure 2 shows the radius of 
gyration, R.,, for two chains differing in length with

Fig. 3. Radius of gyration as function o fN ; Дф is equal to: 1 
— л/180, 2 — n/18, 3 — n/9, 4  — л/3, 5 — 2л a different 
scaling law Rg ~ N a is obtained fo r  each value o f Дф. In 
each graph, ф„ is fixed  at n
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T a b l e  1. Scaling exponent for the Rg vs. N  relationship as func
tion of Дф

Дф (ф„ = 0) a

Compacted systems 1/3
2n 0.51

ji/3 0.53
я/9 0.68

it/18 0.95
тг/180 1.00

of the number of monomers in the chain, for several va
lues of Acp (or rigidities). Results are graphically sum
marized in Fig. 3, which shows that R,t. scales differently 
with large N 's at different values of Acp. Table 1 gives the 
a scaling exponent in the RK ~ № relationship, inclu
ding, as a reference, the value a = 1/3 which corre
sponds to a hypothetical chain packed in such a way 
that no volume is left unoccupied. Clearly, for a real 
polymer, a  must always be larger than 1/3; at the most, 
it can be 1. The case a = 1 corresponds to perfectly rigid 
chains (Acp = 0), i.e. to helical conformations, for which 
the chain size grows linearly with N . The calculated va
lue of a for Acp = 2я corresponds well with the analyti
cal value obtained by Flory [8 ] for what he called the 
freely rotating chain model, with no-self-avoiding consi
derations. The remaining values of a  for 0 < Acp < 2я fit 
well between these extreme cases and show that the Rs 
vs. N  scaling law depends on chain rigidity. Although 
very large values of N  have not been obtained due to a 
prohibitively large increase in computing time, the ran
ge considered covers well the usual experimental mole
cular weights (for which N  < 2000).

In order to verify that Acp is indeed the driving factor 
for the a scaling exponent in the R fN )  relationship, we 
also run a set of computer experiments in which we 
fixed Acp and let cp„ vary. Figure 4 shows the R 4 vs. N  re
lationship for these cases. Both rigid and semi-rigid ca
ses are presented, and since the Acp equal to 0 and to 2л 
are trivial cases, it can be considered that the paralle
lism between the R fN )  graphs, for different values of cp„ 
and fixed Acp, reflects that Acp is the parameter which 
determines the a exponent in the scaling law for R fN ).

A pictorial way to visualize the present results is to 
think on the helical conformations, corresponding to Acp 
= 0, as a basic structure, and then to start Acp to grow 
up.

Tire basic helical structures are built up by consider
ing a constant rotation angle, cp,„ along the chain. The 
value of this angle determines how fast the chain exten
sion grows as monomers are added to it, the slower gro
wing rates corresponding to the values that approach тс 
as much as the characteristic contact distance, Dc, allows 
it. The helix will degenerate in the nll-trans conforma
tion for cp„ = 0. However, in any case, the size of the 
chain will be proportional to N , apart from a small 
correction due to the small separation of each /, vector 
from the exact geometrical axis of the structure. The

1 0 0 0 0

Fig. 4. Radius of gyration as function of N ; cp„ is equal to: 1 
— 7Г/6 , 2 — n/3, 3 — u; Acp is fixed  at (а) л/6 , semi-rigid 
case, or (b) tc/2 , flexible case

overall extension increase of the helices will always be 
in a straight geometry and the linear scaling between R 
and N  settles naturally.

If we now grow Acp to a small value (as compared to 
я), the small mobility given to cp allows the overall gro
wing of the chain to separate from the straight geome
try, however, for sufficiently small Acp the helical nature 
of the structure is not altered because the local axis til
ting cannot be large enough and so, close turns of the 
chain cannot be produced. Strong randomization of the 
structure is limited because the local radius of curvature 
for the still recognizable axis of the structure cannot be 
too small. In fact, for the great majority of structures, 
deviations from the original straight geometries are re
stricted by the random character of the growing pro
cess, which tends to compensate turns in the structure 
on either side. So, although the R}, vs. N  relationship be
comes non-linear, departure from such type of scaling 
is reduced, and although its precise nature is not clear, 
it would be presumably the same for any value of cp„.

For Acp close to я /6 , the helical nature of the chain 
structures can be preserved only in a very crude man
ner, strong deviations from the linearity between R,, and
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N  set in, mainly due to the possibility of getting large 
turns of the overall structure, associated with fluctu
ations in the random character of the cp, sequences for 
two or more consecutive monomers. Finally, for larger 
values of Дер, the helical nature of the chains is comple
tely lost, a strong randomization of the structures sets in 
and the statistics for the overall sizes of the structures 
becomes essentially the same.

In the light of the presented results, chain stiffness 
factors [9] must be cautiously interpreted because, al
though given definitions correctly assign it to restric
tions in the angular rotation interval, they also assume a 
quadratic relationship between R and N . As we have 
seen, for the case in which the rotation angle is restric
ted to a continuous single interval, as occurs in rigid 
chain polymers, R? can scale differently with N , and the 
stiffness evaluation must consider both, the R4 vs. N  sca
ling law and the Rg ratio for experimental and 0-condi- 
tions, and the result obtained will reflect cp-statistics 
through cp„ and Д<р.

Tire randomness of bond rotation within the model 
interval [<p„ - Дер, cp„ + Дер], is of course of great concern 
to the present discussion, however, the introduction of 
such restrictions for the rotation angle, allows the iden
tification of the rigidity (Дер) and the helicity (cp„), appart 
from others, as the important characterizing parameters 
to typify the kind of disorder associated with polymeric 
chains. Any physical situation in which ep-correlations 
exist is beyond the scope of the present results, but 
comparison to the ideas here discussed could presuma
bly help us identify the effect that some correlations can 
introduce.

CONCLUSIONS

By using a simple model, a dependence on bond rigi
dity, associated with the amplitude of the angular varia
tion of the dihedral angle, was found for the scaling law

between the chain size and the number of monomers in 
a polymeric chain. An additional parameter, namely the 
helicity, which corresponds with the average rotation 
angle, is also a useful parameter to understand the 
structural characteristics of polymeric chains. Although 
simple, this approach enabled us to study the loss of he
licity due to increased freedom of bond rotation.

The model in its present form does not take account 
for the situations when the loss of rigidity is caused by 
the loss of helicity at few places along the chain, ho
wever, the results obtained illustrate the important 
effects of restricted bond rotation and set intuitive and 
pictorical views on the conformation of chains in gene
ral situations, useful for understanding chain rigidity at 
different scales.
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