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Fig. 1. Effect of SW/Vtot ratio on the synthesis of glucose-based 
star polymers shown as: a) current profile, b) first order plot of 
current, c) first order kinetic plot of monomer conversion
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Fig. 2. Effect of SW/Vtot ratio on evolution of Mn and Mw/Mn ver-
sus monomer conversion during the synthesis of glucose-based 
star polymers 
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Fig. 3. Effect of SW/Vtot ratio on apparent polymerization rate 
coefficient ( appkp )

In this case Rp is defined as [39]: 

 Rp = kp[M][Pn] = kp[M] /L]CuIIX-[
t

app
red

k
k•  (2)

where: [Pn]
•  – concentration of propagating radicals.

The reduction of deactivator rate constant can be pre-
sented as [38]: 
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The appkp  is proportional to the root of the reduction rate 
constant [ appkred  = ln(I0/It)] [40] and, based on eq. (3), appkp  is 
proportional to the square root of SW/Vtot. 

The polymerization kinetics and linear molecular 
mass evolution with monomer conversion, illustrated in 
Fig. 1c and Fig. 2, result in polymers with low Mw/Mn val-
ues (Fig. 4a–c). Furthermore, Mw/Mn were dependent on 
SW, but still remained low, i.e., 1.14 at 87 % of monomer 
conversion (SW/Vtot = 0.06 cm-1) (Fig. 4c). 
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