

Fig. 1. Effect of SW/V_{tot} ratio on the synthesis of glucose-based star polymers shown as: a) current profile, b) first order plot of current, c) first order kinetic plot of monomer conversion

$$R_{p} = k_{p}[\mathbf{M}][\mathbf{P}_{n}^{\bullet}] = k_{p}[\mathbf{M}]\sqrt{\frac{[\mathbf{X}-\mathbf{C}\mathbf{u}^{\mathrm{II}}/\mathbf{L}]k_{red}^{app}}{k_{t}}}$$
(2)

where: $[P_n^{\bullet}]$ – concentration of propagating radicals.

Fig. 2. Effect of SW/V_{tot} ratio on evolution of \overline{M}_n and $\overline{M}_w/\overline{M}_n$ versus monomer conversion during the synthesis of glucose-based star polymers

Fig. 3. Effect of SW/V_{tot} ratio on apparent polymerization rate coefficient (k_p^{app})

The reduction of deactivator rate constant can be presented as [38]:

$$k_{red}^{app} = \left(\frac{SW}{V_{tot}}\right) \sqrt{\frac{D_o}{\pi}}$$
(3)

The k_p^{app} is proportional to the root of the reduction rate constant $[k_{red}^{app} = \ln(I_0/I_t)]$ [40] and, based on eq. (3), k_p^{app} is proportional to the square root of SW/V_{tot} .

The polymerization kinetics and linear molecular mass evolution with monomer conversion, illustrated in Fig. 1c and Fig. 2, result in polymers with low $\overline{M}_w/\overline{M}_n$ values (Fig. 4a–c). Furthermore, $\overline{M}_w/\overline{M}_n$ were dependent on *SW*, but still remained low, *i.e.*, 1.14 at 87 % of monomer conversion (*SW*/*V*_{tot} = 0.06 cm⁻¹) (Fig. 4c).