POLIMERY

CZASOPISMO POŚWIĘCONE CHEMII, TECHNOLOGII i PRZETWÓRSTWU POLIMERÓW

Od Redakcji

Niniejszy zeszyt "Polimerów" zawiera publikacje opracowane na podstawie referatów i wybranych komunikatów wygłoszonych podczas VIII Kongresu Technologii Chemicznej, który odbył się w Rzeszowie w sierpniu 2015 r.

Zespół Redakcyjny serdecznie dziękuje prof. dr. hab. inż. Henrykowi Galinie i prof. dr. hab. inż. Andrzejowi Sobkowiakowi z Politechniki Rzeszowskiej za inicjatywę wydania tego zeszytu oraz za pomoc w jego przygotowaniu.

Synteza poli(akrylanu butylu) metodą kontrolowanej elektrochemicznie polimeryzacji rodnikowej z przeniesieniem atomu^{*)}

Paweł Chmielarz^{1), **)}, Andrzej Sobkowiak¹⁾

DOI: dx.doi.org/10.14314/polimery.2016.585

Streszczenie: Homopolimery poli(akrylanu butylu) syntetyzowano z wykorzystaniem elektrochemicznie kontrolowanej polimeryzacji rodnikowej z przeniesieniem atomu (*e*ATRP), przy mniejszym niż zwykle (50–400 ppm) stężeniu katalizatora na poziomie 10 ppm. Metodą analizy chromatograficznej (GPC) stwierdzono, że synteza poliakrylanów przebiegała zgodnie z mechanizmem ATRP. Widma ¹H NMR potwierdziły strukturę chemiczną zsyntetyzowanych homopolimerów.

Słowa kluczowe: elektrochemicznie kontrolowana ATRP, homopolimery, poli(akrylan butylu).

Synthesis of poly(butyl acrylate) using an electrochemically mediated atom transfer radical polymerization

Abstract: Poly(butyl acrylate) homopolymers were prepared *via* electrochemically mediated atom transfer radical polymerization (*e*ATRP) using only 10 ppm concentration of Cu(II) complex catalyst, lower than commonly reported 50–400 ppm. The results of chromatographic analysis (GPC) indicate that the formation of polyacrylates proceeded *via* ATRP mechanism. ¹H NMR spectra confirm the chemical structure of the synthesized homopolymers.

Keywords: electrochemically mediated ATRP, homopolymers, poly(butyl acrylate).

¹⁾ Politechnika Rzeszowska, Wydział Chemiczny, al. Powstańców Warszawy 6, 35-959 Rzeszów.

^{*)} Materiał zawarty w artykule prezentowano podczas VIII Kongresu Technologii Chemicznej "Surowce – Energia – Materiały" w dniach 30.08–4.09.2015 r. w Rzeszowie.

^{**)} Autor do korespondencji; e-mail: p_chmiel@prz.edu.pl

Polimeryzacja rodnikowa z przeniesieniem atomu (ATRP) stanowi jeden z najważniejszych sposobów syntezy różnych polimerów, ze względu na duże możliwości optymalizowania układu katalitycznego [1]. Stosowanie metody ATRP wiąże się jednak z koniecznością użycia dużego stężenia katalizatora, wrażliwego na działanie powietrza i utleniaczy. W celu rozwiązania tego problemu zaproponowano techniki polimeryzacji ATRP, w których aktywatory są regenerowane w wyniku: przeniesienia elektronu (ARGET) [2, 3], ciągłej regeneracji (ICAR) [4, 5], przeniesienia elektronu i aktywacji pomocniczej (SARA) [6, 7], fotoinicjowania (π -ATRP) [8, 9] oraz na drodze elektrochemicznej z wykorzystaniem prądu elektrycznego (*e*ATRP) [10–19].

Jedynie w wypadku techniki *e*ATRP nie ma konieczności stosowania związków chemicznych jako czynników redukujących, ponieważ dobór odpowiedniego natężenia prądu lub potencjału umożliwia sterowanie szybkością polimeryzacji, a więc także stosunkiem stężeń aktywatora i dezaktywatora [20]. Mechanizm tego procesu można przedstawić schematem A, w którym X oznacza atom fluorowca, L – ligand, P_n – rosnący łańcuch polimeru, X⁻ – stabilny rodnik atomu fluorowca, P_n–X – inicjator, X–Cu^{II}/L – kompleks dezaktywujący, M – monomer, k_a – stałą szybkości aktywacji, k_{da} – stałą szybkości dezaktywacji, k_{red} – stałą szybkości redukcji, k_p – stałą szybkości propagacji, k_t – stałą szybkości terminacji [21]:

Schemat A

W metodzie tej stosuje się odpowiedni potencjał katodowy (E_{app}), niezbędny do zredukowania kompleksu X–Cu^{II}/L i utworzenia aktywnej postaci Cu^I/L w pobliżu powierzchni elektrody pracującej (WE), co umożliwia rozpoczęcie polimeryzacji [11]. Podczas energicznego mieszania zredukowana cząstka Cu^I/L może skutecznie przechodzić w głąb roztworu i reagować z inicjatorem (P_n –X) według mechanizmu elektrochemicznego procesu katalitycznego (EC'), generując propagujące rodniki (P_n), a równocześnie utleniać się do postaci zdezaktywowanej (X–Cu^{II}/L) [11, 12, 16]. Rodniki (P_n) mogą ulegać propagacji, przyłączając monomer (M), i następnej szybkiej dezaktywacji w reakcji z X–Cu^{II}/L, z odtworzeniem Cu^I/L oraz powstaniem wydłużonego już łańcucha polimeru, zakończonego fluorowcem (P_n –X) [22].

Metoda *e*ATRP wykazuje zalety charakterystyczne dla systemu ARGET ATRP, dzięki możliwości stosowania katalizatora o stężeniu na poziomie ppm i tolerancji na oddziaływanie O₂, jednocześnie zapewnia przyjazne środowisko reakcji w wyniku wyeliminowania chemicznych czynników redukujących i recykling katalizatora na drodze wydzielania elektrolitycznego [10–12, 14, 16].

Metodę *e*ATRP z powodzeniem wykorzystano do polimeryzacji monomerów niepolarnych, takich jak: akrylan metylu [10], akrylan butylu [12, 14, 16] i metakrylan metylu [23], do wytwarzania materiałów polimerowych o różnej strukturze i architekturze, np. polimerów gwiaździstych [14] przy użyciu kompleksu katalitycznego o stężeniu 50–400 ppm [10, 12, 14, 16, 23].

Celem niniejszej pracy była synteza poliakrylanów za pomocą metody *e*ATRP, umożliwiającej uzyskanie kontroli nad przebiegiem polimeryzacji w warunkach najmniejszego stężenia katalizatora (do 10 ppm).

CZĘŚĆ DOŚWIADCZALNA

Materiały

α-Bromoizomaślan etylu (EBiB, Sigma-Aldrich), nadchloran tetrabutyloamoniowy (TBAP, Sigma-Aldrich), tetrafluoroboran tetraetyloamoniowy (TBAPF₄, Sigma--Aldrich), bromek miedzi(II) (Cu^{II}Br₂, Sigma-Aldrich), metylohydroksyceluloza (Tylose, MH = 300, Sigma-Aldrich), N,N-dimetyloformamid (DMF, Sigma-Aldrich), tlenek glinu(III) (Al₂O₃, Sigma-Aldrich), elektrody platynowe (Pt, Alfa Aesar) użyto bez dodatkowego oczyszczania. Akrylan butylu (BA, Sigma-Aldrich) przepuszczano przez kolumnę wypełnioną Al₂O₃ w celu usunięcia inhibitora. Tri(2-pirydylometylo)aminę (TPMA), żel metylocelulozowy i kompleks katalityczny Cu^{II}Br₂/2TPMA przygotowano zgodnie z opublikowanymi już metodami [17, 24].

Synteza poli(akrylanu butylu) metodą eATRP

Syntezę poliakrylanów metodą *e*ATRP realizowano w atmosferze argonu w temp. 50 °C. Do kolby reakcyjnej wprowadzano TBAP (1,37 g, 4 mmol) oraz 10 cm³ BA (70 mmol), 10 cm³ DMF i odpowiednią ilość 0,05 M roztworu kompleksu katalitycznego Cu^{II}Br₂/2TPMA w DMF (0,14 cm³ – 100 ppm, 0,1 cm³ – 75 ppm, 0,07 cm³ – 50 ppm, 0,035 cm³ – 25 ppm, 0,014 cm³ – 10 ppm). Krzywe CV rejestrowano z zastosowaniem dysku platynowego jako elektrody pracującej (WE), nasyconej elektrody kalomelowej (NEK) jako elektrody odniesienia (RE) i siatki platynowej jako elektrody pomocniczej (CE), umożliwiającej wyznaczenie potencjału stosowanego podczas elektrolizy ($E_{app} = E_{pc}$ - 80 mV) (rys. 1).

Do mieszaniny reakcyjnej wprowadzano 0,05 cm³ EBiB (0,3 mmol) i rejestrowano krzywe CV w celu potwierdzenia wzrostu wartości prądu katodowego. Następnie dysk platynowy zastępowano siatką platynową, umożliwiającą przeprowadzenie polimeryzacji metodą elektrolizy preparatywnej w warunkach kontrolowanego potencjału. Próbki mieszaniny reakcyjnej o obj.

Rys. 1. Krzywe CV w funkcji stężenia kompleksu katalitycznego [Cu^{II}Br₂/2TPMA] rejestrowane w układzie niezawierającym EBiB, strzałka oznacza potencjał stosowany podczas elektrolizy Fig. 1. Cyclic voltammetry results as a function of catalyst complex concentration [Cu^{II}Br₂/2TPMA] in the absence of EBiB, arrow indicates the potential applied during electrolysis

0,1 cm³, pobierane w odstępach czasowych 0,5, 1, 2 i 3 h, analizowano za pomocą chromatografii gazowej GC. Z mieszanin poreakcyjnych wytrącano osady homopolimerów przy użyciu mieszaniny metanolu i wody (9/1 % obj.), a następnie suszono je w temp. 80 °C w suszarce próżniowej przez 24 h. Przygotowane w ten sposób próbki analizowano metodą chromatografii żelowej GPC.

Metodyka badań

– Konwersję monomeru (α) oraz teoretyczny, liczbowo średni ciężar cząsteczkowy ($M_{n,th}$) syntetyzowanych homopolimerów wyznaczano przy użyciu chromatografu gazowego Hewlett-Packard 4890A z detektorem FID i kolumną kapilarną HP-1, sterowanego za pomocą programu Chromax.

– Rozkład ciężarów cząsteczkowych (MWD) próbek homopolimerów wyznaczano z zastosowaniem chromatografu żelowego firmy Viscotec T60A, wyposażonego w układ trzech detektorów: załamania światła (RI), rozpraszania światła (LS) i lepkościowego (DV). Rozdziału dokonywano w temp. 25 °C z wykorzystaniem 4 kolumn typu SDV firmy Polymer Standards Service, o średnicy porów 100-10 000 Å. Warunki rozdziału były następujące: objętościowe natężenie przepływu eluentu (THF) -1 cm³/min, pętla zaworu dozującego – 0,02 cm³, stężenie roztworów badanych próbek 5–6 mg/cm³, czas analizy - 45 min. Pracą chromatografu sterowano za pomocą programu TRISEC Data Acquisition System. Interpretację wyników przeprowadzono na podstawie konwencjonalnej kalibracji kolumn przy użyciu standardowych wzorców polistyrenowych.

- Pomiary elektrochemiczne metodami: woltamperometryczną (CV) i elektrolizy preparatywnej w warunkach kontrolowanego potencjału prowadzono w układzie trójelektrodowym za pomocą potencjostatu Metrohm Autolab (AUT84337), przy użyciu oprogramowania GPES EcoChemie B.V. Corporation. Elektrodę pracującą stanowił dysk platynowy - w pomiarach woltamperometrycznych ($A = 0,071 \text{ cm}^2$) oraz siatka platynowa – w pomiarach chronoamperometrycznych ($A \approx 6 \text{ cm}^2$). Funkcję elektrody pomocniczej pełniła siatka platynowa umieszczona w rurce zakończonej szklanym spiekiem, zawierającej warstwę żelu metylocelulozowego i wypełnionej 0,2 M roztworem TBAP w DMF. Elektrodę odniesienia stanowiła nasycona elektroda kalomelowa (NEK, Gamry) oddzielona od części katodowej za pomocą końcówki vycor. W celu wyznaczenia wartości potencjałów, niezbędnych do przeprowadzenia elektrolizy preparatywnej, rejestrowano krzywe CV z szybkością skanowania 100 mV/s. Reakcje prowadzono w reaktorze zaopatrzonym w mieszadło magnetyczne, chłodnicę zwrotną oraz termostat (VEB MLW Inc., U7C), w atmosferze argonu, w temp. 50 °C.

– Strukturę syntetyzowanych homopolimerów charakteryzowano na podstawie widm ¹H NMR, rejestrowanych za pomocą spektrometru FT NMR Bruker Avance 500^{II}. Badane próbki rozpuszczane w CDCl₃ tworzyły roztwory o stężeniu ok. 0,2 g/dm³.

WYNIKI I ICH OMÓWIENIE

W ostatnich latach można zaobserwować duży postęp w wykorzystaniu metody *e*ATRP do polimeryzacji monomerów niepolarnych, np. akrylanu butylu, w warunkach dużego stężenia kompleksu katalitycznego (50– 400 ppm) [12, 14, 16]. Naszym celem było uzyskanie podobnej kontroli nad przebiegiem polimeryzacji, jednak z zastosowaniem jak najmniejszej ilości katalizatora (do 10 ppm) (schemat B):

Schemat B

Wyniki przeprowadzonych reakcji zamieszczono w tabeli 1.

Z wykresu natężenia prądu w funkcji czasu polimeryzacji akrylanu butylu (BA) (rys. 2) wynika, że wraz ze zwiększaniem stężenia kompleksu katalitycznego w układzie rośnie początkowa wartość natężenia prądu. Jest to spowodowane redukcją większej ilości dezaktywatora, co wpływa z kolei na wzrost stężenia powstającego aktywatora.

Przestawione na wykresie półlogarytmicznym zależności liniowe (rys. 3a) wskazują, że stężenie propagujących rodników w serii próbek badanych polimerów jest stałe w analizowanym przedziale trwania procesu. Zależności krzywych kinetycznych konwersji akrylanu butylu w funkcji czasu polimeryzacji (rys. 3b) potwierdzają natomiast I-rzędowość omawianej reakcji względem monomeru [25].

W wypadku *e*ATRP większe stężenie kompleksu katalitycznego powinno powodować zwiększenie stałej szybkości polimeryzacji (R_p), ponieważ jest ona proporcjonalna do stężenia kompleksu [X–Cu^{II}/L], zgodnie z równaniem:

$$R_{p} = k_{p}[M][P^{\cdot}] = k_{p}[M]K_{ATRP} \frac{[P-X][Cu^{l}/L]}{[X-Cu^{l}/L]}$$
[12] (1)

gdzie:

$$[P^{-}] = \sqrt{\frac{k_{red} [X - Cu^{II}/L]}{k_t}} [12, 26]$$

Zaobserwowano, że wraz ze zwiększającym się początkowym stężeniem kompleksu $[X-Cu^{II}/L]_0$, rosła też szybkość polimeryzacji w przybliżeniu proporcjonalnie do pierwiastka kwadratowego $[X-Cu^{II}/L]$, zgodnie z powyższym równaniem [26]. Wzrost wartości R_p był spowodowany większym stężeniem propagujących rodników [P⁻], będącym efektem szybszej redukcji X–Cu^{II}/L do Cu^I/L.

Zastosowanie mniejszego stężenia kompleksu katalitycznego podczas polimeryzacji skutkowało szerszym

Rys. 2. Krzywe zależności natężenia prądu od czasu polimeryzacji akrylanu butylu w funkcji [Br-Cu^{II}/2TPMA] Fig. 2. Current versus polymerization time profile of butyl acrylate as a function of [Br-Cu^{II}/2TPMA]

MWD uzyskanych polimerów (tabela 1, rys. 4). Zależność ta jest wyrażona równaniem:

$$\frac{M_w}{M_n} = 1 + \left(\frac{k_p [P-X]}{k_{da} [X - Cu^{II}/L]}\right) \left(\frac{2}{\alpha} - 1\right) [12]$$
(2)

zgodnie z którym mniejsze stężenie [X–Cu^{II}/L] powoduje powstawanie polimerów o większym *MWD*, w wyniku wolniejszych dezaktywacji (mniejsza wartość k_{da}) i addycji monomeru do propagującego rodnika, zacho-

T a b e l a 1. Wpływ stężenia kompleksu katalitycznego Cu^{II}Br₂/2TPMA na postęp polimeryzacji akrylanu butylu^{*)} T a b l e 1. Effect of Cu^{II}Br₂/2TPMA catalyst complex concentration on the progress of butyl acrylate polymerization^{*)}

Symbol próbki	[BA]/[EBiB]/[CuIIBr2/2L]1)	$[Cu^{II}Br_2/2L]^{1)}$ mM	α ²⁾ %	${{M_{n,th}}^{2)}\over \cdot 10^{-3}}$	$M_{n,app}^{3)}$ $\cdot 10^{-3}$	$M_w/M_n^{(3)}$	${k_{p,app}}^{2)}{\mathbf{h}^{-1}}$
PBA100	200/1/0,020	0,35	88	22,8	19,4	1,08	0,747
PBA75	200/1/0,015	0,26	85	22,1	19,0	1,10	0,592
PBA50	200/1/0,010	0,17	78	20,3	18,1	1,11	0,486
PBA25	200/1/0,005	0,09	75	19,5	17,5	1,13	0,480
PBA10	200/1/0,002	0,03	71	18,5	17,2	1,15	0,413

*) Warunki polimeryzacji: WE = siatka platynowa, CE = siatka platynowa (żel Tylose MH = 300), RE = NEK, [BA] = 3,5 M (w DMF), nadchloran tetrabutyloamoniowy (TBAP) = 0,2 M, T = 50 °C, $E_{app} = E_{pc}$ - 80 mV (vs. NEK), t = 3 h, V_{tot} = 20 cm³, f = 1100 rpm.

*) Polymerization conditions: WE = platinum mesh , CE = platinum mesh (gel Tylose MH = 300), RE = NEK, [BA] = 3.5 M (in DMF), tetrabutylammonium perchlorate (TBAP) = 0.2 M, T = 50 °C, $E_{app} = E_{pc}$ - 80 mV (vs. NEK), t = 3 h, V_{tot} = 20 cm³, f = 1100 rpm. ¹⁾ L = TPMA.

²⁾ Konwersja BA (*α*) i pozorna stała szybkości propagacji *k*_{*p,app*} (obliczone na podstawie chromatogramów GC, z wykorzystaniem równań omówionych szczegółowo pracach [14, 25]).

²⁾ Conversion BA (α) and apparent propagation rate constant $k_{p,app}$ (calculated from GC chromatograms, using the equations described in detail in [14, 25]).

²⁾ $M_{n,th} = ([BA]_0/[EBiB]_0) \cdot \alpha \cdot M_{BA} + M_{EBiB}.$

³⁾ *MWD* i $M_{n,app}$ wyznaczone z wykorzystaniem chromatografii GPC.

³⁾ *MWD* and $M_{n,app}$ determined using GPC chromatography.

Rys. 3. Zależności: a) $\ln([M]_0/[M])$ – czas polimeryzacji, b) α – czas polimeryzacji akrylanu butylu w funkcji różnych stężeń kompleksu katalitycznego Cu^{II}Br₂/2TPMA; *R* – współczynnik korelacji liniowej

Fig. 3. Comparison of: a) $ln([M]_0/[M]) - polymerization time, b) \alpha - polymerization time plots for the polymerization of butyl acrylate at different concentrations of Cu^{II}Br₂/2TPMA catalyst complex;$ *R*– linear correlation coefficient

dzących z mniejszą częstotliwością podczas poszczególnych cykli aktywacji-dezaktywacji.

W wypadku, gdy zastosowano mniejsze stężenie kompleksu katalitycznego (10 ppm) uzyskano transparentną mieszaninę reakcyjną, stwierdzono też 5–40-krotnie mniejsze stężenie [X–Cu^{II}/L] niż stężenie kompleksu obserwowane w innych pracach, gdzie w polimeryzacji ATRP używano kompleksu w stężeniu 50–400 ppm [12, 14, 16]. Znacznie zwiększa to możliwości wykorzystania metody *e*ATRP do syntezy dających się łatwo oczyścić kopolimerów przeznaczonych do wielu aplikacji, np. w biomedycynie.

Strukturę chemiczną syntetyzowanego homopoli-

Rys. 4. Krzywe rozkładu ciężarów cząsteczkowych próbek poliakrylanów: PBA100, PBA75, PBA50, PBA25 i PBA10 Fig. 4. Molecular weight distribution curves of polyacrylates: PBA100, PBA75, PBA50, PBA25 and PBA10

meru PBA (rys. 5) potwierdzono metodą spektroskopii ¹H NMR. W widmie można wyróżnić charakterystyczne sygnały protonów grup tworzących łańcuch analizowanego PBA: $-OCH_2-$ (a; 3,75–4,30 ppm), -CH- (α ; 2,20–2,48 ppm), $-CH_2-$ (β +b+c; 1,30–1,98 ppm) i $-CH_3$ (d; 0,83–1,00 ppm).

PODSUMOWANIE

Przy użyciu metody *e*ATRP syntetyzowano poliakrylany. Kontrolę nad przebiegiem polimeryzacji uzyskano z zastosowaniem stężenia katalizatora na poziomie 10 ppm. Na podstawie analizy mechanizmu *e*ATRP stwierdzono rosnącą liniowo krzywą zależności wyrażenia ln([M]₀/[M]) od czasu polimeryzacji, potwierdzającą kontrolowany charakter polimeryzacji. W warunkach mniejszego stężenia kompleksu katalitycznego w wyniku polimeryzacji uzyskano polimery charakteryzujące się szerszym rozkładem ciężarów cząsteczkowych *MWD*. Metodą ¹H NMR potwierdzono strukturę chemiczną syntetyzowanych homopolimerów.

Praca naukowa finansowana przez Politechnikę Rzeszowską w ramach działalności statutowej (U-553/DS). Widma NMR wykonane w Wydziałowym Laboratorium Spektrometrii Wydziału Chemicznego Politechniki Rzeszowskiej, finansowano ze środków na utrzymanie potencjału badawczego.

Rys. 5. Widmo ¹H NMR homopolimeru PBA (PBA10, $M_n = 17200$, $M_w/M_n = 1,15$) po oczyszczeniu w CDCl₃ Fig. 5. ¹H NMR spectrum of PBA homopolymer (PBA10, $M_n = 17200$, $M_w/M_n = 1.15$) after purification in CDCl₃

LITERATURA

- [1] Matyjaszewski K.: *Macromolecules* **2012**, *45*, 4015. http://dx.doi.org//10.1021/ma3001719
- Jakubowski W., Matyjaszewski K.: Angewandte Chemie International Edition 2006, 45, 4482. http://dx.doi.org/10.1002/anie.200600272
- [3] Hansson S., Ostmark E., Carlmark A., Malmstrom E.: ACS Applied Materials and Interfaces 2009, 1, 2651. http://dx.doi.org/10.1021/am900547g
- [4] Matyjaszewski K., Jakubowski W., Min K. i in.: Proceedings of the National Academy of Science of the United States of America 2006, 103, 15 309. http://dx.doi.org/10.1073/pnas.0602675103
- [5] Toloza Porras C., D'Hooge D.R., Reyniers M.-F., Marin G.B.: *Macromolecular Theory and Simulations* 2013, 22, 136. http://dx.doi.org/10.1002/mats.201200074
- [6] Matyjaszewski K., Dong H., Jakubowski W. i in.: Langmuir 2007, 23, 4528. http://dx.doi.org/10.1021/la063402e
- Zhang Y., Wang Y., Matyjaszewski K.: Macromolecules 2011, 44, 683. http://dx.doi.org/10.1021/ma102492c
- [8] Erel I., Cianga I., Serhatli E., Yagci Y.: European Polymer Journal 2002, 38, 1409.
- http://dx.doi.org/10.1016/s0014-3057(02)00006-x [9] Tasdelen M.A., Uygun M., Yagci Y.: *Macromolecular*
- *Chemistry and Physics* **2011**, *212*, 2036. http://dx.doi.org/10.1002/macp.201100267
- [10] Magenau A.J.D., Strandwitz N.C., Gennaro A., Matyjaszewski K.: Science 2011, 332, 81. http://dx.doi.org/10.1126/science.1202357
- [11] Bortolamei N., Isse A.A., Magenau A.J.D. i in.: Angewandte Chemie International Edition 2011, 50, 11 391. http://dx.doi.org/10.1002/anie.201105317
- [12] Magenau A.J.D., Bortolamei N., Frick E. i in.: *Macro-molecules* 2013, 46, 4346. http://dx.doi.org/10.1021/Ma400869e

- [13] Li B., Yu B., Huck W.T.S. i in.: *Journal of the American Chemical Society* 2013, 135, 1708. http://dx.doi.org/10.1021/ja3116197
- [14] Park S., Cho H.Y., Wegner K.B. i in.: *Macromolecules* 2013, 46, 5856. http://dx.doi.org/10.1021/Ma401308e
- [15] Jin G.-P., Fu Y., Bao X.-C. i in.: Journal of Applied Electrochemistry 2014, 44, 621. http://dx.doi.org/10.1007/s10800-014-0666-2
- [16] Park S., Chmielarz P., Gennaro A., Matyjaszewski K.: Angewandte Chemie International Edition 2015, 54, 2388. http://dx.doi.org/10.1002/anie.201410598
- [17] Chmielarz P., Park S., Simakova A., Matyjaszewski K.: *Polymer* 2015, 60, 302. http://dx.doi.org/10.1016/j.polymer.2015.01.051
- [18] Chmielarz P., Krys P., Park S., Matyjaszewski K.: Polymer 2015, 71, 143. http://dx.doi.org/10.1016/j.polymer.2015.06.042
- [19] Chmielarz P., Sobkowiak A., Matyjaszewski K.: *Polymer* 2015, 77, 266. http://dx.doi.org/10.1016/j.polymer.2015.09.038
- [20] Nicolay R., Kwak Y., Matyjaszewski K.: Angewandte Chemie International Edition 2010, 49, 541. http://dx.doi.org/10.1002/anie.200905340
- [21] Krol P., Chmielarz P.: *Progress in Organic Coatings* 2014, 77, 913.

http://dx.doi.org/10.1016/j.porgcoat.2014.01.027

- [22] Krol P., Chmielarz P.: Polimery 2011, 56, 429.
- [23] Pat. USA 0183 055 (2014).
- [24] Xia J.H., Matyjaszewski K.: Macromolecules 1999, 32, 2434. http://dx.doi.org/10.1021/Ma981694n
- [25] Krol P., Chmielarz P.: Polimery 2015, 60, 316. http://dx.doi.org/10.14314/polimery.2015.316
- [26] Chan N., Cunningham M.F., Hutchinson R.A.: Macromolecular Chemistry and Physics 2008, 209, 1797. http://dx.doi.org/10.1002/macp.200800328