Wpływ dodatku hydroksytlenku glinu na krytyczny czas redukcji widzialności w dymie powstałym ze spalania lub pirolizy żywicy epoksydowej^{*)}

Tomasz Węsierski^{1), **)}, Aneta Łukaszek-Chmielewska¹⁾, Marek Konecki¹⁾, Tomasz Drzymała¹⁾

DOI: dx.doi.org/10.14314/polimery.2015.723

Streszczenie: Zbadano wpływ dodatku 5 % mas. hydroksytlenku glinu [AlO(OH)] na wydłużenie krytycznego czasu redukcji widzialności w strefie dymu wydzielanego podczas spalania lub pirolizy żywicy epoksydowej (Epidian 5).

Słowa kluczowe: spalanie żywicy epoksydowej, krytyczny czas redukcji widzialności, ewakuacja, uniepalniacz, zasięg widzialności.

Influence of aluminum hydroxide oxide addition on the critical time of visibility reduction in smoke from pyrolysis and combustion of epoxy resin

Abstract: The effect of the addition of 5 wt % aluminum hydroxide oxide [AlO(OH)] to epoxy resin Epidian 5 on the improvement in evacuation conditions from a smoke-filled area during the burning or pyrolysis of the resin has been investigated. An increase in the critical time of visibility reduction was observed.

Keywords: epoxy resin combustion, critical time of visibility reduction, evacuation, flame retardant, visibility range.

Zjawisko pożaru jest definiowane w literaturze jako niekontrolowana reakcja spalania, której towarzyszy wydzielanie ciepła i przenoszenie masy. Głównymi czynnikami decydującymi o zagrożeniu ludzi w trakcie pożaru są m.in.: dym, toksyczne produkty spalania, deficyt tlenu, wysoka temperatura gazów pożarowych oraz oddziaływanie płomieni. Z danych statystycznych wynika, że 3-4 % ludzi ginie w wyniku bezpośredniego oddziaływania płomieni na organizm ludzki, a przyczyną ponad 80 % wypadków śmiertelnych w trakcie pożarów jest dym [1, 2]. Dym stanowi poważne zagrożenie dla ludzi ze względu na zawarte w nim toksyczne produkty rozkładu termicznego i spalania. Ponadto ogranicza on widzialność w pomieszczeniu, co utrudnia – a czasami nawet zupełnie uniemożliwia – przeprowadzenie ewakuacji ludzi z budynku.

Dym definiuje się jako dyspersyjny układ aerozolowy, składający się z dwóch faz: fazy gazowej, odpowiedzialnej za toksyczność środowiska pożarowego, oraz fazy złożonej z cząstek ciekłych i stałych, decydującej o zasięgu widzialności. Ilość wydzielanego dymu zależy między innymi od budowy chemicznej materiału oraz stosowanych dodatków, takich jak: plastyfikatory i napełniacze (w tym związki organiczne i nieorganiczne) działające jednocześnie jako antypireny i supresanty dymu, stężenia tlenu w otoczeniu i rodzaju spalania (płomieniowe lub bezpłomieniowe) [3–13].

Gęstość oraz ilość generowanego dymu zwiększają się wraz z ciężarem cząsteczkowym spalających się węglowodorów, przy czym proste węglowodory alifatyczne wydzielają znacznie mniej dymu niż wielopierścieniowe węglowodory aromatyczne. Zdolności dymotwórcze węglowodorów rosną w szeregu: *n*-alkany < izo-alkany < alkeny < węglowodory aromatyczne jednopierścieniowe < węglowodory aromatyczne wielopierścieniowe [14].

W warunkach bezpłomieniowego rozkładu termicznego ilość wydzielanego z materiałów dymu jest zazwyczaj większa niż ilość dymu powstałego w warunkach spalania płomieniowego. Dotyczy to szczególnie tworzyw polimerowych. W trakcie spalania płomieniowego, w wyniku reakcji zachodzących pod wpływem płomieni, łańcuch polimerowy dzieli się na mniejsze fragmenty, a niektóre z nich ulegają utlenieniu do tlenku lub ditlenku węgla, co nie powoduje zwiększenia gęstości dymu. Natomiast w warunkach bezpłomieniowych łańcuch polimerowy się rozpada,

¹⁾ Szkoła Główna Służby Pożarniczej, ul. Słowackiego 52/54, 01-629 Warszawa.

^{*)} Materiał zawarty w tym artykule był prezentowany na XIV Międzynarodowej Konferencji Naukowo-Technicznej "Polimery i kompozyty konstrukcyjne – KOMPOZYT 2014" w dniach 7–10 października 2014 r. w Istebnej.

^{**)} Autor do korespondencji; e-mail: wesierskitomasz@poczta. onet.pl

ale poszczególne elementy są większe i nie ulegają Przygotowanie

utlenieniu do tlenku lub ditlenku węgla. Zastosowanie dodatków w postaci plastyfikatorów lub napełniaczy skutkuje, w zależności od wprowadzanego napełniacza, zmniejszeniem, a w niektórych przypadkach zwiększeniem dymotwórczości tworzyw polimerowych. Do grupy uniepalniaczy, będących jednocześnie supresantami dymu, dodawanych do wielu materiałów polimerowych, zalicza się związki zawierające atomy metalu. Są to m.in. wodorotlenki glinu i magnezu, tlenki i sole cynku, cyny, boru, niklu, bizmutu oraz związki kompleksowe. Ostatnio coraz większym zainteresowaniem cieszą się organiczne i nieorganiczne związki fosforowe, jako skuteczne środki ogniochronne, niepowodujące zwiększenia zadymienia w środowisku pożaru [14, 15]. Głównym zadaniem uniepalniaczy wprowadzanych do materiału jest zazwyczaj zmniejszenie szybkości rozprzestrzeniania się ognia na powierzchni materiału palnego lub obniżenie temperatury w strefie spalania, a tym samym zmniejszenie jego intensywności.

W pracy omówiono wpływ dodatku 5 % mas. hydroksytlenku glinu [AlO(OH)] na szybkość zmniejszania się zasięgu widzialności w dymie wydzielanym z żywicy epoksydowej Epidian 5, narażonej na zewnętrzny strumień ciepła (Q_{zewn} = 30, 50 oraz 70 kW/m²). Obliczenia wykonano w odniesieniu do modelowego układu o objętości 187,5 m³, z zastosowaniem metodyki przedstawionej w publikacji [7].

CZĘŚĆ DOŚWIADCZALNA

Materiały

W badaniach wykorzystano żywicę epoksydową o nazwie handlowej Epidian 5 (Ep 5), produkcji Zakładów Chemicznych "Organika-Sarzyna" w Nowej Sarzynie [16], sieciowaną utwardzaczem Z-1 [17]. Uniepalniającym dodatkiem do żywicy był hydroksytlenek glinu [AlO(OH)], produkcji firmy Nabalec A [18].

Wytwarzanie kompozytów

Przygotowanie materiałów do badań obejmowało wytworzenie mieszanek, utwardzenie kompozycji oraz przygotowanie kształtek. Składniki kompozycji (żywica + uniepalniacz) dokładnie mieszano w mieszalniku zaopatrzonym w mieszadło mechaniczne o szybkości obrotów ok. 3500 obr/min. Po odpowietrzeniu, do układu wprowadzano utwardzacz Z-1 w takiej samej ilości, jak w przypadku żywicy niemodyfikowanej ogniochronnie (10,5 cz. mas. Z-1 na 100 cz. mas. Ep 5). Ponownie mieszano mechanicznie i odpowietrzano w ciągu 5–10 min, po czym kompozycje przelewano do przygotowanych wcześniej form i tak przygotowane próbki pozostawiano w temperaturze pokojowej do utwardzenia. Aby zapewnić całkowite utwardzenie próbek, sezonowano je przez 14 dni.

Przygotowanie próbek do badań

Do oznaczenia cech pożarowych z każdego rodzaju badanego materiału przygotowano po pięć próbek o wymiarach 100 × 100 × 8 mm. Przed przystąpieniem do badań próbki zważono, a następnie owinięto folią aluminiową i tylną część osłoniono kocem ceramicznym w celu zminimalizowania transportu masy i ciepła na krawędziach próbki. Tak przygotowaną próbkę umieszczano w komorze spalania kalorymetru.

Metodyka badań

Przed każdą serią pomiarów, zgodnie z normą ISO 5660:2002, przeprowadzano kalibrację wagi, grzejnika oraz analizatora użycia tlenu i szybkości wydzielania ciepła [19]. Kalibrację grzejnika wykonywano również w przypadku zmiany wartości strumienia ciepła. Niepewność pomiaru gęstości promieniowania cieplnego wynosiła \pm 2 %. Kalibracji układu pomiarowego gęstości optycznej dokonano za pomocą dwóch filtrów rozpraszających o gęstościach optycznych 0,3 i 0,8, przy założeniu 100 % transmitancji. Prędkość przepływu gazów spalinowych w wyciągu była równa 0,024 \pm 0,002 m³/s. Odchylenia wartości szybkości wydzielania ciepła w trakcie spalania metanu, pod wpływem turbulencji płomienia, wynosiły \pm 1,5 %.

— Badania doświadczalne przeprowadzono za pomocą kalorymetru stożkowego, z zastosowaniem ekspozycji cieplnej 30, 50 oraz 70 kW/m². Typem inicjacji reakcji spalania był zapłon, w warunkach orientacji poziomej próbek w stosunku do radiatora. Przyjęty obiekt modelowy o kubaturze 187,5 m³ odpowiada przeciętnej wielkości mieszkania (o powierzchni 62,5 m² i wysokości 3 m) w polskim mieście w roku 2013. Analizy dokonano przy założeniu, że wydzielający się dym jest jednorodny i rozchodzi się równomiernie w całej objętości, a proces mieszania dymu z otaczającym powietrzem jest turbulentny. Założono również, iż nie ma fizycznych przeszkód utrudniających rozchodzenie się dymu.

— Do obliczeń modelowych czasów krytycznych redukcji zasięgu widzialności, zgodnie z badaniami Rasbasha przyjęto 3-metrowy krytyczny zasięg widzialności w przypadku pomieszczenia znanego i 10-metrowy — pomieszczenia nieznanego [20]. W odniesieniu do przedmiotów świecących światłem własnym przyjęto, zgodnie z PN-EN 60695-6-1, wartość C =8,0, a w odniesieniu do przedmiotów świecących światłem odbitym C = 3,0 [21]. Założono też, że warunki panujące w kalorymetrze stożkowym są identyczne, jak warunki spalania w układzie modelowym o zadanej objętości. W analizie nie uwzględniono skutku działania substancji drażniących oczy, które mogą spowodować zmniejszenie widzialności nawet o 95 % [20]. Zasięg widzialności obliczono z zależności:

$$Z(t) = \frac{C \cdot V}{SEA_{st}[m_0 - m(t)]} \tag{1}$$

gdzie: Z(t) — zasięg widzialności w funkcji czasu, *SEA* — powierzchnia ekstynkcji właściwej (m²/kg), *V* — kubatura pomieszczenia (m³), m_0 — początkowa masa próbki (kg), m(t) — masa próbki w dowolnej chwili czasu t (kg), *C* — stała charakterystyczna dla sposobu świecenia obserwowanego przedmiotu w dymie.

Na podstawie pomiarów szybkości wydzielania dymu oszacowano krytyczny czas redukcji widzialności, wykorzystując w tym celu wykresy otrzymane z równania (1), analizowane metodą rzutu na oś odciętych [7].

WYNIKI BADAŃ I ICH OMÓWIENIE

Wartości średniej, efektywnej, pochłaniającej światło powierzchni cząstek dymu wydzielanego w czasie rozkładu 1 kg badanego materiału [SEA_{sr} (m²/kg)] oraz jej niepewność pomiarową na poziomie istotności $\alpha = 0,1$, wyznaczone w zewnętrznym strumieniu ciepła równym 30, 50 oraz 70 kW/m², przedstawiono w tabeli 1. SEA_{sr} określano w zakresie spalania płomieniowego, gdzie osiągano stan krytycznej redukcji widzialności zarówno

T a b e l a 1. Wartości SEA_{sr} oraz jej niepewność pomiarowa na poziomie istotności $\alpha = 0,1$ (ΔSEA_{sr}) wyznaczone w różnym zewnętrznym strumieniu ciepła (Q_{zewn})

T a b l e 1. The values of average specific extinction area ($SEA_{s,r}$) and its measurement uncertainty at the significance level $\alpha = 0.1$ at external heat fluxes of 30, 50 and 70 kW/m²

w przypadku przedmiotów święcących światłem własnym, jak i odbitym. Analiza wykazała, iż mimo zauważalnej różnicy (7–20 %), przeciętne wartości *SEA*_{sr} odnoszące się do żywicy modyfikowanej AlO(OH) i niemodyfikowanej można uznać z prawdopodobieństwem P =90 % za istotnie różne (niezgodne ze sobą) tylko w przypadku strumienia ciepła o wartości 50 kW/m² (tabela 2). Jest to efekt dużych wartości niepewności pomiarowych ΔSEA_{sr} i współczynnika zmienności $V_{SEA'}$ wynoszącego w większości przypadków ponad 30 %. Duża zmienność jest cechą charakterystyczną pomiarów *SEA* wszystkich badanych próbek.

W przypadku tej samej kompozycji [zarówno Ep 5, jak i Ep 5 + 5 % mas. AlO(OH)] istotne różnice SEA_{sr} obserwuje się w zewnętrznym strumieniu ciepła równym 70 kW/m², czego przyczyną może być intensywniejsza w tych warunkach fragmentacja łańcuchów polimerowych. Im mniejsza jest ich długość, tym mniejsze też prawdopodobieństwo tworzenia układów wielopierścieniowych oraz sadzy. Potwierdzają to wartości czasów potrzebnych do zapłonu próbki, które w przypadku Q_{zewn} = 70 kW/m² są ponad czterokrotnie mniejsze niż w przypadku Q_{zewn} = 30 kW/m² (tabela 3, rys. 1).

T a b e l a 3. Czas potrzebny do zapłonu próbki w zewnętrznym strumieniu ciepła o różnej wartości

T a b l e 3. Time required for the ignition of the sample at different external heat fluxes

	$SEA_{sr} \pm \Delta SEA_{sr}$, m ² /kg				<i>t_{zapt}</i> , s			
	$Q_{zewn} =$ 30 kW/m ²	$Q_{zewn} = 50 \text{ kW/m}^2$	$Q_{zewn} =$ 70 kW/m ²		$Q_{zewn} =$ 30 kW/m ²	$Q_{zewn} = 50 \text{ kW/m}^2$	$Q_{zewn} =$ 70 kW/m ²	
Ep 5	$(10,3\pm1,3)\cdot10^2$	$(12,3\pm 1,6)\cdot 10^2$	$(5,2\pm0,6)\cdot10^2$	Ep 5	108	50	25	
Ep 5 + 5 % mas. AlO(OH)	$(9,6 \pm 1,3) \cdot 10^2$	$(9,7\pm0,8)\cdot10^2$	$(6,1\pm0,3)\cdot10^2$	Ep 5 + 5 % mas. AlO(OH)	100	48	20	
								_

T a b e l a 2. Kryterium zgodności SEA_{sr} żywicy Ep 5 modyfikowanej dodatkiem 5 % mas. AlO(OH) i niemodyfikowanej T a b l e 2. SEA_{sr} compatibility criterion for non-modified Ep 5 resin and Ep 5 modified with 5 wt % AlO(OH)

Kryterium zgodności $ X_1 - X_2 \le \Delta X_1 + \Delta X_2$	Ep 5, Q_{zewn} = 30 kW/m ²	Ep 5, <i>Q_{zewn}</i> = 50 kW/m ²	Ep 5, <i>Q_{zewn}</i> = 70 kW/m ²	$Ep 5 + 5 \% mas.$ $AlO(OH), Q_{zewn} = 30 \text{ kW/m}^2$	Ep 5 + 5 % mas. AlO(OH), $Q_{zewn} = 50 \text{ kW/m}^2$	Ep 5 + 5 % mas. AlO(OH), $Q_{zewn} = 70 \text{ kW/m}^2$
Ep 5 $Q_{zewn} = 30 \text{ kW/m}^2$	_	Z	N	Z	Z	Ν
Ep 5 $Q_{zewn} = 50 \text{ kW/m}^2$	Z	_	N	Z	Ν	Ν
Ep 5 $Q_{zewn} = 70 \text{ kW/m}^2$	Ν	Ν	_	N	Ν	Z
Ep 5 + 5 % mas. AlO(OH) $Q_{zewn} = 30 \text{ kW/m}^2$	Z	Z	N	_	Z	Ν
Ep 5 + 5 % mas. AlO(OH) $Q_{zewn} = 50 \text{ kW/m}^2$	Z	Ν	N	Z	_	Ν
Ep 5 + 5 % mas. AlO(OH) $Q_{zewn} = 70 \text{ kW/m}^2$	Ν	Ν	Z	Ν	Ν	_

Z – zgodne (jednakowe), N – niezgodne (różne).

Z – compatible (identical), N – non-compatible (different).

Rys. 1. Ubytek masy próbki: a) żywicy niemodyfikowanej Ep 5, b) żywicy modyfikowanej Ep 5 + 5 % mas. AlO(OH), w zewnętrznym strumieniu ciepła: 1) 30 kW/m², 2) 50 kW/m², 3) 70 kW/m² Fig. 1. Mass loss of the sample: a) non-modified Ep 5 resin, b) Ep 5 modified with 5 wt % AlO(OH) in the external heat flux: 1) 30 kW/m², 2) 50 kW/m², 3) 70 kW/m²

W bardzo dużym strumieniu ciepła łatwo tworzą się małocząsteczkowe rodniki, także z elementów najbardziej stabilnych, tj. układów aromatycznych. W strumieniu o mniejszej wartości odrywają się przede wszystkim łańcuchy alifatyczne, zwłaszcza gdy, jako struktura przejściowa, utworzy się stabilny wolny rodnik. Analiza elementów strukturalnych Ep 5 pozwala zauważyć, że w wyniku rozerwania łańcucha polimerowego mogą się utworzyć bardzo trwałe fragmenty rodnika difenylometylowego, stabilizowanego dodatkowo przez elektrodonorowe atomy tlenu w pozycji para. Obserwacje te potwierdzają badania termicznej degradacji polihydroksyeteru bisfenolu A metodą TGA/MS, podczas których stwierdzono powstawanie w pierwszej kolejności cząsteczek metanu oraz wody [9]. Metan tworzy się na pierwszym etapie procesu w wyniku homolitycznego rozpadu wiązania C-CH₃ (schemat A).

W przypadku próbek modyfikowanej żywicy Ep 5 uniepalnionej AlO(OH) obserwuje się nieco krótszy czas potrzebny do zapłonu niż w przypadku żywicy niemodyfikowanej. Można to tłumaczyć m.in. oddziaływaniem atomów glinu, jako kwasów Lewisa, z układami aromatycznymi, prowadzącym do zmniejszenia gęstości elektronowej w pierścieniu, osłabienia wiązań między pierś-

cieniem a łańcuchem alifatycznym, a w konsekwencji do łatwiejszej degradacji.

Szybkość ubytku masy (d*m*/d*t*) zwiększa się wraz z wartością zewnętrznego strumienia ciepła. Różnice między d*m*/d*t* modyfikowanej i niemodyfikowanej żywicy Ep 5 są jednak, podobnie jak w przypadku *SEA*_{sr} stosunkowo niewielkie (7–11 %) (tabela 4). Duże wartości niepewności pomiarowych nasuwają wniosek, że różnica między ubytkiem masy Ep 5, a ubytkiem masy Ep 5 + 5 % mas. AlO(OH) nie jest istotna dla α = 0,1. Zmiany wartości d*m*/d*t* takich samych próbek poddanych działaniu różnych strumieni ciepła również nie są istotne dla α = 0,1, co potwierdza prawie równoległy przebieg krzywych ubytku masy w czasie (por. rys. 1).

T a b e l a 4. Średnie wartości szybkości ubytku masy (dm/dt) badanego materiału w zewnętrznym strumieniu ciepła (Q_{zewn}) T a b l e 4. The values of average mass loss rate dm/dt of the tested material at external heat fluxes Q_{zewn} of 30, 50 and 70 kW/m²

	d <i>m</i> /d <i>t</i> , kg/s			
	$Q_{zewn} =$ 30 kW/m ²	$Q_{zewn} =$ 50 kW/m ²	$Q_{zewn} =$ 70 kW/m ²	
Ep 5	$(5,3\pm0,6)\cdot10^{-3}$	$(5,4\pm0,7)\cdot10^{-3}$	$(5,8\pm0,9)\cdot10^{-3}$	
Ep 5 + 5 % mas. AlO(OH)	$(4,7 \pm 0,6) \cdot 10^{-3}$	$(4,9 \pm 0,5) \cdot 10^{-3}$	$(5,4\pm0,7)\cdot10^{-3}$	

Niepewność pomiarowa wyznaczona na poziomie istotności α = 0,1. Measurement uncertainty determined at the significance level α = 0.1.

Rozkład termiczny materiałów w warunkach różnych SEA_{sr} oraz $dm/dt \neq 0$ prowadzi do ograniczenia zasięgu widzialności. Zasięg widzialności, zgodnie z równaniem (1), jest odwrotnie proporcjonalny do ubytku masy oraz wartości SEA_{sr} . W przypadku żywicy Ep 5 niemodyfikowanej oraz modyfikowanej ogniochronnie gwałtowne zmniejszenie widzialności obserwuje się po rozpoczęciu spalania płomieniowego, czemu odpowiada nagła zmiana nachylenia krzywej ubytku masy w funkcji czasu

(rys. 1). Czasy krytyczne (t_{kr}) ograniczenia widzialności przedmiotów świecących światłem własnym (C = 8) oraz światłem odbitym (C = 3) zmieniają się od 11 do 165 s od chwili zapłonu próbki o masie przeliczeniowej 1 kg. Największe t_{kr} obserwuje się w odniesieniu do zewnętrznego strumienia ciepła wynoszącego 70 kW/m² (tabele 5, 6, rys. 2). Natomiast różnice t_{kr} odpowiadającego Q_{zewn} = 30 kW/m² oraz Q_{zewn} = 50 kW/m² można uznać za zaniedbywalne. W każdym z rozpatrywanych przypadków wartość t_{kr} modyfikowanej ogniochronnie żywicy jest większa niż t_{kr} żywicy niemodyfikowanej. Na podstawie danych przedstawionych w tabeli 7 obliczono, że w przypadku zapalenia żywicy Ep 5 modyfikowanej dodatkiem AlO(OH) czas, w którym można się bezpiecznie ewakuować jest o 14 ± 4 s (dla $\alpha = 0,1$) krótszy niż w przypadku zapalenia żywicy Ep 5 niemodyfikowanej.

T a b e l a 5. Krytyczne czasy redukcji widzialności niemodyfikowanej żywicy Ep 5

T a b l e 5. The values of critical times of visibility reduction for non-modified Ep 5 resin

	t_{kr} , s		Qzewn	
	$Z_{kr} = 10 \text{ m}$	$Z_{kr} = 3 \text{ m}$	kW/m ²	
	11 ^{a)} (119) ^{b)}	44 (152)	30	
<i>C</i> = 3	15 (65)	46 (96)	50	
	26 (51)	70 (95)	70	
	37 (145)	88 (196)	30	
<i>C</i> = 8	39 (89)	98 (148)	50	
	58 (83)	135 (160)	70	

^{a)} Wartości przed nawiasem: czas liczony od chwili rozpoczęcia spalania płomieniowego próbki.

^{a)} Values before parenthesis: time counted from the beginning of flame combustion of the sample.

^{b)} Wartości w nawiasie: czas liczony od chwili narażenia próbki na badany strumień ciepła.

^{b)} Values in parenthesis: time counted from the moment of thermal exposure of the sample to the tested heat flux.

T a b e l a 6. Krytyczne czasy redukcji widzialności żywicy Ep 5 modyfikowanej dodatkiem 5 % mas. AlO(OH)

T a b l e 6. The values of critical times of visibility reduction for Ep 5 resin modified with 5 wt % AlO(OH)

	t_{kr}	Qzewn		
	$Z_{kr} = 10 \text{ m}$	$Z_{kr} = 3 \text{ m}$	kW/m ²	
	19 ^{a)} (119) ^{b)}	60 (160)	30	
<i>C</i> = 3	20 (68)	61 (109)	50	
	31 (51)	85 (105)	70	
	50 (150)	120 (220)	30	
<i>C</i> = 8	48 (96)	120 (168)	50	
	68 (88)	150 (170)	70	

^{a)} Wartości przed nawiasem: czas liczony od chwili rozpoczęcia spalania płomieniowego próbki.

^{b)} Wartości w nawiasie: czas liczony od chwili narażenia próbki na badany strumień ciepła. T a b e l a 7. Różnice między krytycznym czasem redukcji widzialności żywicy Ep 5 niemodyfikowanej oraz modyfikowaniej dodatkiem 5 % mas. AlO(OH)

Table 7.	Differences of critical	times of	visibility red	uction for
non-modifi	ed Ep 5 resin and Ep 5	modified	l with 5 wt %.	AlO(OH)

	dt_k	Qzewn	
	$Z_{kr} = 10 \text{ m}$	$Z_{kr} = 3 \text{ m}$	kW/m ²
	8 ^{a)} (0) ^{b)}	16 (8)	30
C = 3	5 (3)	15 (13)	50
	5 (0)	15 (10)	70
	13 (5)	32 (24)	30
C = 8	9 (7)	22 (20)	50
	10 (5)	15 (10)	70

^{a)} Wartości poza nawiasem: czas liczony od momentu spalania płomieniowego próbki.

^{b)} Wartości w nawiasie: czas liczony od momentu narażenia próbki na badany strumień ciepła.

Należy również rozważyć oddziaływanie bodźca termicznego w warunkach pożarowych przed zapłonem próbki. W rozpatrywanych przypadkach zewnętrzny strumień ciepła powoduje zapłon próbki żywicy modyfikowanej ogniochronnie na ogół o 5 s szybciej niż próbki żywicy niemodyfikowanej (tabela 3). Czas, który pozostaje na ewakuację po zapaleniu próbki Ep 5 z hydroksytlenkiem glinu jest więc tylko o 9 s dłuższy niż w przypadku próbki Ep 5.

Z równania (2), przedstawiającego odwrotność zasięgu widzialności w funkcji czasu (rys. 3), wyznaczono parametr kinetyczny procesu, zdefiniowany jako stała szybkości redukcji widzialności k_{rw} (m⁻¹ s⁻¹):

$$\frac{1}{Z} = k_{rw}t + \text{const}$$
(2)

Wyznaczone wartości k_{rw} w odniesieniu do pierwszej minuty spalania płomieniowego przedstawiono w tabeli 8. Do zależności 1/Z = f(t), zgodnie z (2), dopasowano linię trendu równania liniowego y = ax + b. Dopasowanie wykazywało wysoki współczynnik korelacji ($R^2 \approx 1$), potwierdzający poprawność wyboru przyjętej zależności.

T a b e l a 8. Stałe szybkości redukcji widzialności (k_{rw}) żywicy Ep 5 niemodyfikowanej oraz modyfikowanej dodatkiem 5 % mas. AlO(OH) (oznaczenie w pierwszej minucie spalania płomieniowego)

Γ a b l e 8. Visibility reduction rate constants k_{rw} for the non-mo-
dified Ep 5 resin and Ep 5 modified with 5 wt % AlO(OH) (deter-
nined for first minute of flame combustion)

	$k_{rw}, { m m}^{-1} { m s}^{-1}$			
	$Q_{zewn} =$ 30 kW/m ²	$Q_{zewn} = 50 \text{ kW/m}^2$	$Q_{zewn} =$ 70 kW/m ²	
Ep 5	$(7,9 \pm 0,2) \cdot 10^{-3}$	$(7,3\pm0,2)\cdot10^{-3}$	$(4,7\pm0,9)\cdot10^{-3}$	
Ep 5 + 5 % mas. AlO(OH)	$(5,8\pm0,2)\cdot10^{-3}$	$(5,9 \pm 0,2) \cdot 10^{-3}$	$(4,0\pm0,7)\cdot10^{-3}$	

Wartości $k_{rw} \pm \Delta k_{rw}$ wskazują, że dodatek 5 % mas. AlO(OH) do żywicy Ep 5 w istotnym stopniu wpłynął na

Rys. 2. Zasięg widzialności w funkcji czasu w zakresie spalania płomieniowego: a) Ep 5, $Q_{zewn} = 30 \text{ kW/m}^2$, b) Ep 5 + 5 % mas. AlO(OH), $Q_{zewn} = 30 \text{ kW/m}^2$, c) Ep 5, $Q_{zewn} = 50 \text{ kW/m}^2$, d) Ep 5 + 5 % mas. AlO(OH), $Q_{zewn} = 50 \text{ kW/m}^2$, e) Ep 5, $Q_{zewn} = 70 \text{ kW/m}^2$, f) Ep 5 + 5 % mas. AlO(OH), $Q_{zewn} = 70 \text{ kW/m}^2$, f) Ep 5 + 5 % mas. Alo(OH), $Q_{zewn} = 70 \text{ kW/m}^2$, f) Ep 5 + 5 % mas. Alo(OH), $Q_{zewn} = 70 \text{ kW/m}^2$, f) Ep 5 + 5 % mas. Alo(OH), $Q_{zewn} = 70 \text{ kW/m}^2$, f) Ep 5

Fig. 2. Visibility range as a function of time for the flame combustion: a) non-modified Ep 5 resin, 30 kW/m², b) Ep 5 + 5 wt % AlO(OH), 30 kW/m², c) non-modified Ep 5 resin, 50 kW/m², d) Ep 5 + 5 wt % AlO(OH), 50 kW/m², e) non-modified Ep 5 resin, 70 kW/m², f) Ep 5 + 5 wt % AlO(OH), 70 kW/m²

zmniejszenie szybkości ograniczenia zasięgu widzialności, a jednocześnie na wydłużenie czasu umożliwiające bezpieczną ewakuację. Analiza wartości k_{rw} wskazu-

je, że najmniejsze ograniczenie zasięgu widzialności występuje w warunkach zewnętrznego strumienia ciepła równego 70 kW/m².

Fig. 3. Plot of 1/Z = f(t) in the flame combustion range: 1) non-modified Ep 5 resin, 2) Ep 5 + 5 wt % AlO(OH)

PODSUMOWANIE

Na podstawie analizy wartości SEA_{sr} oraz dm/dt, odpowiadających próbkom żywicy Ep 5 niemodyfikowanej oraz modyfikowanej ogniochronnie dodatkiem 5 % mas. AlO(OH), stwierdzono rozbieżności mieszczące się w przedziale 7–20 %. Jednak tylko zmiany wartości SEA_{sr} obserwowane w zewnętrznym strumieniu ciepła Q_{zewn} = 50 kW/m² można uznać za mieszczące się poza granicami niepewności metody.

Podobnie, różnice krytycznych czasów redukcji widzialności ($dt_{kr} + \Delta dt_{kr} = 14 \pm 4$ s) żywicy Ep 5 modyfikowanej i niemodyfikowanej ogniochronnie nie są duże, zwłaszcza po uwzględnieniu krótszego o 5 s czasu potrzebnego do zapłonu próbki modyfikowanej dodatkiem AlO(OH). Można więc stwierdzić, że w celu wyraźnego polepszenia ognioodporności żywicy Ep 5 należy zastosować większy niż 5 % mas. dodatek AlO(OH). Wniosek ten potwierdzają doniesienia literaturowe wskazujące na wysoką skuteczność ogniochronną wodorotlenków oraz hydroksytlenków glinu i magnezu użytych w stężeniach rzędu kilkudziesięciu procent [21–23].

LITERATURA

- [1] Sychta Z: "Badanie materiałów i kryteria oceny z punktu widzenia stwarzanego zagrożenia pożarowego", Politechnika Szczecińska, Prace Naukowe 1985, str. 299.
- [2] "Guidelines for Chemical Process Quantitative Risk Analysis", American Institute of Chemical Engineers, Nowy Jork 1989.
- [3] Östman B.A.-L.: "Heat Release in Fires" (red. Babranskas V., Grayson S.), Elsevier Science Publ. Ltd., Nowy Jork 1992, str. 233–250.
- [4] Drysdale D.: "Anintroduction to Fire Dynamics", John Wiley and Sons, 1985.
- [5] Tewarson A.: "Generation of Heat and Chemical Compounds in Fire", Section 1/Chapter 13 w "SFPE Handbook of Fire Protection Engineering", NFPA, USA 1988.
- [6] Konecki M.: Prace Instytutu Techniki Budowlanej 2005, 2 (134), 39.
- [7] Konecki M., Półka M.: Polimery 2006, 51, 293.
- [8] Farmahini-Farahani M., Jafari S.H., Khonakdar H.A. i in.: Macromolecular Materials and Engineering 2007, 292, 1103. http://dx.doi.org/10.1002/mame.200700079
- Corres M.A., Zubitur M., Cortazar M., Mugica A.: Journal of Analytical and Applied Pyrolysis 2011, 92, 407. http://dx.doi.org/10.1016/j.jaap.2011.08.002
- [10] Lin J., Yang Q., Wen X. i in.: Journal of Polymer Research 2011, 18, 1667. http://dx.doi.org/10.1007/s10965-011-9572-z
- [11] Lai X., Tang S., Li H., Zeng X.: Polymer Degradation and Stability 2015, 113, 22.
 http://dx.doi.org/10.1016/j.polymdegradstab.2015.01.009
- [12] Wang J.J., Wang L., Xiao A.G.: Polymer-Plastic Technology and Engineering 2009, 48, 297. http://dx.doi.org/10.1080/03602550802675645
- [13] Tai Q.L., Shan X.Y., Song L. i in.: Polymer Composites 2014, 35, 167. http://dx.doi.org/10.1002/pc.22646
- [14] Jankowska G., Przygocki W., Włochowicz A.: "Palność polimerów i materiałów polimerowych", WNT, Warszawa 2007.
- [15] Shariatinia Z., Javeri N., Shekarriz S.: Carbohydrate Polymers 2015, 118, 183.

http://dx.doi.org/10.1016/j.carbpol.2014.11.039

- [16] Karta charakterystyki Epidian 5. http://www.cedar.com.pl [dostęp 22.01.2015].
- [17] Utwardzacz Z-1. http://www.cedar.com.pl [dostęp 07.06.2014].
- [18] http://www.nabaltec.de [dostęp: 07.05.2012].
- [19] Rasbash D.J.: Engineers Journal **1951**, 11, 46.
- [20] Jin T.: Journal of Fire and Flammability 1979, 9, 135.
- [21] Camino G., Maffezzoli A., Braglia M. i in.: Polymer Degradation and Stability 2001, 74, 457. http://dx.doi.org/10.1016/S0141-3910(01)00167-7
- [22] Xu T., Huang X., Zhao Y.: Fire Safety Journal 2011, 46, 300. http://dx.doi.org/10.1016/j.firesaf.2011.05.001
- [23] Hu Y.H., Han X., Tan R.: Chinese Journal of Chemical Physics 2007, 20, 185. http://dx.doi.org/10.1360/cjcp2007.20(2).185.6

Otrzymano 27 X 2014 r.