AGNIESZKA EWA STĘPIEŃ

Uniwersytet Rzeszowski Zamiejscowy Wydział Biotechnologii Centrum Biotechnologii Stosowanej i Nauk Podstawowych Zakład Biotechnologii ul. Sokołowska 26, 36-100 Kolbuszowa e-mail: astepien@univ.rzeszow.pl

Ocena wpływu biodegradacji na strukturę chemiczną polieterouretanów

Streszczenie — Na podstawie analizy widm ¹H NMR oraz MALDI-TOF określano zmiany w budowie chemicznej polieterouretanów zsyntezowanych z: diizocyjanianu 1,6-heksametylenu (HDI) i oligo(oksypropyleno)diolu (Rokopol 7P) lub z 4,4'-diizocyjanianu difenylenometanu (MDI) i poli(tetrahydrofuranu) (PTHF), lub z MDI i poli(oksypropyleno)diolu (PPG), zachodzące w wyniku degradacji w środowisku gleby w ciągu 120 dni. W przypadku próbek PUR z alifatycznego diizocyjanianu HDI i polieterolu Rokopol 7P po biodegradacji zaobserwowano zmiany w ich strukturze chemicznej, analiza zaś struktur chemicznych poliuretanów otrzymanych z aromatycznego diizocyjanianu MDI i polieteroli PPG, bądź PTHF, przed i po biodegradacji nie wykazała zmian. **Słowa kluczowe**: polieterouretany, współczynnik polarności, biodegradacja, budowa chemiczna.

ASSESSMENT OF THE EFFECT OF BIODEGRADATION ON THE CHEMICAL STRUCTURE OF POLY(ETHER URETHANES)

Summary — Changes in the chemical structures of poly(ether urethanes) synthesized from 1,6-hexamethylene diisocyanate (HDI) and oligo(oxypropylene)diol (Rokopol 7P) or 4,4'-diphenylmethane diisocyanate (MDI) and poly(tetrahydrofuran) (PTHF) or MDI and poly(oxypropylene)diol (PPG), after degradation in the soil environment for a period of 120 days, were investigated using ¹H NMR and MALDI-TOF spectral analysis. The structural changes were observed as a result of biodegradation of PUR made from aliphatic diisocyanate HDI and polyetherol Rokopol 7P, whereas the chemical structures of polyurethanes synthesized from aromatic diisocyanate MDI and polyetherols PPG or PTHF showed no differences before and after biodegradation. **Keywords**: poly(ether urethanes), polarity index, biodegradation, chemical structure.

WPROWADZENIE

Poliuretany (PUR) w skali przemysłowej są wytwarzane w reakcji poliaddycji dwu- lub wielofunkcyjnych izocyjanianów i polioli (polieterów lub poliestrów). Właściwości PUR zależą od ciężarów cząsteczkowych oraz budowy łańcuchów [wzór (I)] – w szczególności od rodzaju sztywnych segmentów uretanowych [pochodzących od aromatycznych, alicyklicznych lub alifatycznych diizocyjanianów (OCN-R₂-NCO) i dodatkowo

 \sim [R₁- O- CO- NH- R₂- NH- CO- O- R₃- O- OC- NH- R₂- NH- CO]-(I)

wprowadzanych przedłużaczy diolowych, (HO-R₃-OH)] i od rodzaju segmentów elastycznych, utworzonych z oligomerów poliolowych [polieterów lub poliestrów (HO-R₁-OH)]. Poliuretany charakteryzują się dużą wytrzymałością na rozciąganie, a jednocześnie, regulowaną w szerokim zakresie, twardością i dobrą odpornością na ścieranie. Są to jednak polimery mało stabilne termicznie o zróżnicowanej odporności chemicznej i biologicznej [1-7].

Powszechnie PUR są stosowane jako tworzywa piankowe, elastomery konstrukcyjne i powłokowe, kleje, farby, materiały skóropodobne, włókna, środki pomocnicze, membrany, spoiwa a także jako biomateriały.

W przypadku użycia ich w medycynie jako biomateriały (endoprotezy i implanty), poza odpowiednimi właściwościami fizykomechanicznymi poliuretany powinny wykazywać odporność na oddziaływanie środowiska biologicznego, w warunkach którego będą eksploatowane.

Przed zastosowaniem PUR w takiej aplikacji jest konieczna zatem wcześniejsza ocena odporności danego poliuretanu na procesy biodegradacji, uwzględniająca zmiany jego struktury chemicznej, nadcząsteczkowej budowy, powierzchni i kształtu, w odniesieniu do korozyjności danego środowiska [8–10].

Biodegradacja tworzyw polimerowych (biologiczna lub biotyczna) obejmuje szereg procesów o charakterze chemiczno-biologicznym, związanych z destrukcją wywołaną działaniem enzymów wydzielanych przez osadzające się na powierzchni polimerów mikroorganizmy (bakterie i grzyby mikroskopowe) [11].

W wyniku destrukcji następuje skracanie łańcuchów polimerowych i eliminacja ich fragmentów, a w konsekwencji zmniejszenie ciężaru cząsteczkowego polimeru. W odpowiednich warunkach proces kończy się depolimeryzacją czyli rozkładem polimeru na monomery lub jego degradacją prowadzącą do powstania innych związków małocząsteczkowych.

Takie działanie drobnoustrojów w obrębie danego materiału polimerowego, pochodzenia zarówno naturalnego, jak i syntetycznego powoduje niekorzystne zmiany jego właściwości użytkowych ograniczając możliwości zastosowania [12].

Potrzebne jest zatem podjęcie badań mających na celu poznanie mechanizmu procesu degradacji w warunkach naturalnych, np. w glebie i określenie oddziaływań mikroorganizmów glebowych na poliuretany.

W celu oceny przebiegu procesu degradacji w naturalnym środowisku Cosgrove i współpr. [13] poddali oddziaływaniu mikroorganizmów glebowych próbki poliestrouretanu Impranil, umieszczając je w glebie kwaśnej i obojętnej. Stwierdzili spadek o 95 % wartości wytrzymałości na rozciąganie próbek. Suresh S. Umare i współpr. [14] przechowywali próbki poliestrouretanu w ogrodniczej glebie o pH = 7,5, zaobserwowali liniowy ubytek masy, wzrost temperatury topnienia, stopnia krystaliczności oraz zmiany powierzchni próbek, a także zmiany świadczące o hydrolizie wiązania estrowego i uretanowego. Shah i współpr. [15] opisali zdolność do degradacji folii poliestrouretanowej pod wpływem działania bakterii występujących w glebie pobranej ze składowisk odpadów tworzyw polimerowych w Islamabadzie (Pakistan). Zaobserwowane po degradacji zmiany zarówno na powierzchni, jak i w strukturze chemicznej próbek wskazywały na hydrolizę wiązań estrowych. Urgun-Demirtas i współpr. [16] określili natomiast odporność na biologiczną degradację pianki polieteroestrouretanowej zastosowanej jako materiał zabezpieczający na wysypiskach śmieci.

Problem degradacji biologicznej przebiegającej w środowisku naturalnym (gleby lub powietrza) dotyczy również poliuretanów wykorzystywanych w charakterze materiałów ochronnych w różnego typu instalacjach, zwłaszcza w budownictwie i ciepłownictwie.

W niniejszej pracy podjęłam próbę wyjaśnienia dominujących mechanizmów tego typu degradacji tworzyw poliuretanowych i określenia, jak wpływa biologiczna degradacja na strukturę chemiczną, a w konsekwencji na właściwości fizykochemiczne polimeru.

CZĘŚĆ DOŚWIADCZALNA

Materiały

- 4,4'-diizocyjanian difenylenometanu, M = 250,25 g/mol (MDI, Aldrich);

diizocyjanian 1,6-heksametylenu, M = 168 g/mol
(HDI, Aldrich);

— oligo(oksypropyleno)diol (Rokopol 7P, Zakłady Chemiczne "Rokita S.A." w Brzegu Dolnym), odwadniany w wyniku ogrzewania pod obniżonym ciśnieniem, w atmosferze azotu, w temp. 110 °C w ciągu 2 h;

− poli(tetrahydrofuran), $M_n \approx 1000$ (PTHF, Aldrich);

- poli(oksypropyleno)diol, $M_n \approx 1000$ (PPG, Aldrich);

- 1,4-butanodiol, M = 90,12 g/mol (BD, Aldrich), odwadniany - zasypany sitami i ogrzewany pod obniżonym ciśnieniem, w atmosferze azotu, w temp. 110 °C w ciagu 2 h;

- 1,4-diazabicyklo[2,2,2] oktan, M = 112,17 g/mol (DABCO, Fluka);

dibutyloamina (Merck);

– chlorobenzen cz. (POCh S.A. Gliwice);

- metanol cz. (POCh S.A. Gliwice);

 błękit bromofenolowy, wskaźnik (POCh S.A. Gliwice).

Syntezy elastomerów

Poliuretany syntezowano z różnych diizocyjanianów (alifatycznego HDI, aromatycznego MDI) i polieteroli (Rokopol 7P, PTHF, PPG), metodą dwuetapowej polimeryzacji w masie.

Etap I — synteza prepolimeru uretanowo--izocyjanianowego

Prepolimer otrzymywano w reakcji wybranego diizocyjanianu z odpowiednim poliolem (tabela 1). Wszystkie syntezy prowadzono w kolbie trójszyjnej, zaopatrzonej w mieszadło, chłodnicę zwrotną, termometr i wkraplacz, w atmosferze gazu obojętnego – azotu (zabezpieczającego mieszaninę przed kontaktem z wilgocią i tlenem, obecnymi w powietrzu). Do określonej ilości diizocyjanianu ogrzanego do temp. 80 °C wprowadzano odpowiednią, wynikającą z przyjętej stechiometrii (-NCO:-OH 2:1) ilość wybranego polieterolu z katalizatorem (DABCO). Przebieg reakcji kontrolowano oznaczając zawartość nieprzereagowanych grup -NCO w mieszaninie.

Etap II – przedłużanie łańcucha prepolimeru

Drugi etap rozpoczęto, gdy zawartość grup izocyjanianowych w prepolimerze zmniejszyła się do wartości wyznaczonej teoretycznie na podstawie przyjętej stechiometrii danej reakcji. Otrzymany prepolimer przedłużano za pomocą butano-1,4-diolu (stosunek molowy grup -NCO do -OH wynosił 1,1:1) w obecności katalizaT a b e l a 1. Skład chemiczny i wartości współczynnika polarności κ zsyntezowanych elastomerów PUR

T a ble 1. The chemical composition and polarity index κ values of the synthesized PUR elastomers

Numer próbki	Roc	Czas	Współ-	
	diizocyjanianu	poliolu	degra- dacji dni	czynnik polar- ności κ, %
1	HDI (1,6-heksa- metylenu diizocyjanian) (<i>M</i> = 168 g/mol)	Rokopol 7P [oligo(oksypro- pyleno)diol] (M = 450)	0	35,64
2			30	35,52
3			60	37,25
4			90	40,87
5			120	47,80
6	MDI (4,4'-diizocyja- nian difenyleno- metanu) (<i>M</i> = 250,25 g/mol)	PPG [poli(oksypro- pyleno)diol] (<i>M_n</i> ~ 1000)	0	42,20
7			30	41,80
8			60	43,03
9			90	42,69
10			120	43,28
11	MDI (4,4'-diizocyja- nian difenyleno- metanu) (M = 250,25 g/mol)	PTHF [poli(tetra- hydrofuran)] (M _n ~ 1000)	0	42,22
12			30	41,91
13			60	42,90
14			90	41,30
15			120	41,99

tora (DABCO). Po wymieszaniu składników układ odpowietrzono za pomocą pompki wodnej, po czym elastomer poliuretanowy wylewano na podłoże z politetrafluoroetylenu (PTFE) formując polimerową folię.

Wytworzone elastomery poliuretanowe przechowywano przez 7 dni w temperaturze ok. 20 °C, w szczelnym eksykatorze w atmosferze azotu.

Przygotowanie środowiska degradacji

Próbki foli otrzymanych elastomerów poliuretanowych o wymiarach 1 × 1 cm umieszczano w kolbce z korkiem, o poj. 100 cm³ z zawartością 45 cm³ wyjałowionej pożywki mineralnej (wodny roztwór soli mineralnych NaCl, Na₂HPO₄, MgSO₄, CaCl₂, NH₄Cl, KH₂PO₄) a następnie do układu dodawano 10 cm³ uzyskanego wcześniej z ekstraktu glebowego supernatantu, stanowiącego inoculum mikroorganizmów. Inkubacje prowadzono w ciągu 120 dni w temp. 18–23 °C.

Supernatant (zawiesinę mikroorganizmów glebowych) otrzymano z ekstraktu glebowego w wyniku wytrząsania 10 g przesianej gleby nieżyznej o pH = 7,0 w 90 g wyjałowionego 0,9-proc. roztworu NaCl i następne zdekantowanie znad warstwy gleby.

Ogólnej oceny mikrobiologicznej ekstraktu glebowego dokonano metodą wysiewu powierzchniowego rozcieńczeń, potwierdzającej iż florę mikrobiologiczną gleby stanowią bakterie oraz grzyby – głównie pleśnie.

Po określonym czasie degradacji 30, 60, 90 i 120 dni, próbki wyjmowano, płukano wodą destylowaną, i suszono na powietrzu. Analizowano zmiany strukturalne.

Metodyka badań

Oznaczanie zawartości wolnych grup izocyjanianowych

Do kolbki stożkowej wprowadzano mikropipetą 2,5 cm³ 0,5 M roztworu dibutyloaminy w chlorobenzenie, zawartość kolbki ważono z dokładnością do 0,0001 g, po czym wprowadzano do niej próbkę badanego prepolimeru o masie ok. 0,2 g i ponownie ważono. Po całkowitym rozpuszczeniu się próbki (ok. 15 min) do kolbki wprowadzano 25 cm³ bezwodnego metanolu oraz kilka kropel wskaźnika błękitu bromofenolowego, mieszaninę miareczkowano 0,1 M HCl do uzyskania wyraźnej zmiany barwy z niebieskiej na żółtą. W analogiczny sposób wykonano kontrolną próbę, miareczkując 2,5 cm³ sporządzonego do badań roztworu dibutyloaminy [17, 18]. Zawartość grup izocyjanianowych (X) w badanym prepolimerze obliczano z równania (1) wg PN-EN 1242:2006:

$$X = \frac{0.84 \cdot (V_2 - V_1)}{m}$$
(1)

gdzie: V_2 , V_1 — objętość 0,1 M HCl zużytego na miareczkowanie, odpowiednio, badanej i kontrolnej próbki (cm³), m — naważka prepolimeru (g).

Analizy struktury

Strukturę chemiczną próbek poliuretanów przed i po inkubacji w środowisku biologicznym określano metodą spektrometrii protonowego magnetycznego rezonansu jądrowego ¹H NMR oraz spektrometrii masowej MAL-DI-TOF.

 Widma ¹H NMR w zakresie 0–10 ppm rejestrowano z zastosowaniem spektrometru Brucker 500 MHz i specjalistycznego oprogramowania komputerowego.
Próbki poliuretanów rozpuszczano w deuterowanym dimetylosulfotlenku (DMSO).

– Widma rozkładu ciężarów cząsteczkowych (MAL-DI-TOF) elastomerów poliuretanowych zarejestrowano za pomocą spektrometru masowego z analizatorem czasu przelotu jonów (TOF-MS), model Voyager-Elite. Próbkę do analizy, rozpuszczoną w dimetyloformamidzie (DMF) mieszano z roztworem matrycy DHB (kwasu 2,5-dihydroksybenzoesowego) i jonizowano stosując naświetlania pulsami promieniowania laserowego o długości fali λ = 337 nm.

WYNIKI BADAŃ I ICH OMÓWIENIE

Analiza widm ¹H NMR potwierdziła strukturę chemiczną zsyntezowanych poliuretanów, wszystkim sygnałom w widmie przyporządkowano określone, przedstawione wzorami (II)–(IV) fragmenty budowy chemicznej.

Pojedyncze sygnały protonów aromatycznych, obserwowane w widmie PUR zsyntezowanego z Rokopolu 7P i HDI, pochodzą od niewielkiej ilości zanieczyszczeń

$$\begin{bmatrix} (CH_{2}^{y} - CH^{g} - O)_{n} - CO - NCH_{2}^{f} (CH_{2}^{a})_{4} CH_{2}^{f} N^{-} CO - O - CH_{2}^{c} (CH_{2}^{e})_{2} CH_{2}^{c} - O - OC - NH^{b} - \\ CH_{3}^{h} H^{b} H^{b} H^{b} \end{bmatrix}^{\sim}$$
(II)

$$\begin{bmatrix} CH_{2}^{e}CH^{h}-O)_{n}-CO-NC_{6}H_{4}^{c,d}CH_{2}^{a}C_{6}H_{4}^{c,d}N-CO-O-CH_{2}^{e'}(CH_{2}^{i})_{2}CH_{2}^{e'}-O-OC-NH^{b}-\\ CH_{3}^{g}H^{b}H^{b}H^{b}\end{bmatrix}^{\sim}$$
(III)

$$\sim \left[\underbrace{(CH_2^{e}(CH_2^{k})_2CH_2^{l}O)_nCONC_6H_4^{c,d}CH_2^{a}C_6H_4^{c,d}NCO^{-}O^{-}CH_2^{e'}(CH_2^{i})_2CH_2^{e'}O^{-}OC}_{H^{b}} \right]_{H^{b}}$$
(IV)

związkami aromatycznymi, obecnymi w zakupionych odczynnikach.

Na podstawie wartości integracji sygnałów w widmie ¹H NMR dokonano ilościowej oceny zmian polarności struktury chemicznej PUR przed i po degradacji. W tym celu obliczano współczynnik polarności κ:

$$\kappa = \frac{I_p}{I_p + I_n} \cdot 100 \%$$
 (2)

gdzie: I_p — suma integracji sygnałów pochodzących od polarnych protonów grup CH₃, CH₂ i CH połączonych z polarnymi grupami eterowymi [y, g, c — wzór (II), e,e',h — wzór (III), l,e,e' — (wzór (IV)] i grupami uretanowymi [f — (wzór (II)], sygnału protonów nieprzereagowanych grup -OH (B) i sygnału polarnych grup NH uretanów [b we wzorze (II), (III), (IV)].

$$I_{p} = I_{b} + I_{g} + I_{c} + I_{y} + I_{f}$$
(2a)

$$I_p = I_b + I_e + I_{e'} + I_h + I_B$$
(2b)

$$I_{p} = I_{b} + I_{e} + I_{e'} + I_{l} + I_{B}$$
(2c)

$$I_n$$
 — suma integracji sygnałów pochodzących od protonów
niepolarnych grup -CH₃, -CH₂ i -CH, obecnych w jednostkach
strukturalnych Rokopolu 7P, PPG, PTHF [h, e — wzór (II),
(III); k, i — wzór (IV)], użytego diizocyjanianu alifatycznego
HDI (a) i sygnałów protonów struktur aromatycznego diizocy-
janianu MDI (a, c, d — wzory (II)—(IV)].

$$I_n = I_e + I_h + I_a \tag{2d}$$

$$I_n = I_c + I_d + I_i + I_g + I_a \tag{2e}$$

$$I_n = I_c + I_d + I_i + I_k + I_a \tag{21}$$

Wartości wyznaczonych współczynników κ poszczególnych PUR przedstawia tabela 1.

Wraz z postępem procesu biodegradacji próbek poliuretanów otrzymanych z HDI i Rokopolu 7P (próbki 1–5) zaobserwowano wzrost współczynnika polarności. Zwiększenie wartości κ o 12,2 %, z 35,64 % w przypadku próbki niepoddanej degradacji do 47,8 % – próbki po 120 dniach przechowywania w środowisku gleby, wskazuje na zwiększenia się ilości struktur polarnych w PUR poddanym biologicznej degradacji.

Rys. 1. Widmo ¹H NMR próbki PUR na bazie Rokopolu 7P i HDI (próbka nr 1, tabela 1) Fig. 1. ¹H NMR spectrum of the PUR based on Rokopol 7P and HDI (sample 1 in Table 1)

Rys. 2. Widmo ¹H NMR próbki PUR po 120 dniach degradacji (próbka nr 5, tabela 1) Fig. 2. ¹H NMR spectrum of the PUR after degradation for 120 days (sample 5 in Table 1)

W odniesieniu do poliuretanów otrzymanych z MDI i PPG oraz z HDI i PTHF wartość κ w miarę upływu czasu degradacji zmienia się w bardzo niewielkim stopniu (ok. 1 %).

Widma ¹H NMR poliuretanu zsyntezowanego z Rokopolu 7P i HDI, wykazującego najwyraźniejsze zmiany po degradacji, przedstawiają rys. 1 i 2.

Zarejestrowane widma rozkładu mas (MALDI-TOF) syntezowanych poliuretanów przedstawiają intensywności sygnałów, którym przypisano określone struktury jonów molekularnych polimeru, zwiększone o masę atomową kationów Na⁺ lub H⁺ wynikającą z zastosowanej metody wzbudzenia. Obliczone teoretycznie masy cząsteczkowe prawdopodobnych struktur jonów molekularnych tworzących strukturę określonego poliuretanu (podane w jednostkach masy atomowej) porównywano z odpowiednimi sygnałami w widmach i odczytywano wartości intensywności.

W widmach MALDI-TOF poliuretanu zsyntezowanego z HDI i Rokopolu 7P, zarejestrowanych przed i po najdłuższym czasie biodegradacji (120 dni), zaobserwowano wyraźne zmiany, tj. zwiększenie udziału jonów molekularnych o małym ciężarze cząsteczkowym (m/z = 511,4; 551,3) a jednocześnie spadek intensywności sygnału pochodzącego od jonu molekularnego o dużym ciężarze cząsteczkowym (tabela 2).

W widmach rozkładu ciężaru cząsteczkowego polieterouretanów otrzymanych z aromatycznego diizocyjanianu MDI oraz PPG lub PTHF nie obserwuje się zmian intensywności sygnałów próbek poddanych biologicznej degradacji (tabele 3, 4), co świadczy o braku wpływu oddziaływania mikroorganizmów glebowych na tego typu poliuretany.

T a b e l a 2. Interpretacja widm MALDI-TOF próbek PUR syntezowanego z Rokopolu 7P (A) i HDI (B)

T a b l e 2. Interpretation of MALDI-TOF spectra of the samples of PUR synthesized from Rokopol 7P (A) and HDI (B)

Poło-	Intensywność	względna, %	Prawdopodobna struktura jonu molekularnego	Masa cząstecz- kowa, u
żenie pasma (<i>m</i> /z)	próbka 1	próbka 5		
511,4	19,6	33,1	$BA_1BA_1 + Na^+$	511,538
551,3	23,2	32,0	$BA_3B + Na^+$	551,600
629,6	28,8	33,8	$BA_1BA_3 + Na^+$	627,674
1022,1	27,0	16,9	$A_4BA_{10}H^+$	1018,170
1080,9	16,0	13,0	A ₆ BA ₉ H ⁺	1079,240

T a b e l a 3. Interpretacja widm MALDI-TOF próbek PUR zsyntezowanego z PPG (A) i MDI (B)

Table 3.	Interpretation of MALD	I-TOF spectra of the samples
of PUR syn	thesized from PPG (A) ar	nd MDI (B)

Poło-	Intensywność względna, %		Prawdopodobna	Masa
żenie pasma (<i>m</i> /z)	próbka 6	próbka 10	struktura jonu molekularnego	cząstecz- kowa, u
653,9	10,0	11,2	A ₁ BA ₅ Na ⁺	653,676
770,0	6,2	9,9	BA ₁ BA ₂ Na ⁺	769,812
904,0	5,0	7,5	A ₉ BH ⁺	903,988
1020,1	10,0	11,2	BA1BA3BH+	1020,072
1042,2	2,5	4,4	$A_3BA_{10}H^+$	1042,188
1194,2	5,6	3,7	BA1BA6BH+	1194,124

T a b e l a 4. Interpretacja widm MALDI-TOF próbek PUR zsyntezowanego z PTHF (A) i MDI (B)

T a b l e 4. Interpretation of MALDI-TOF spectra of the samples of PUR synthesized from PTHF (A) and MDI (B)

Poło-	Intensywność	względna, %	Prawdopodobna	Masa
żenie pasma (<i>m</i> /z)	próbka 11	próbka 15	struktura jonu molekularnego	cząstecz- kowa, u
598,0	2,2	4,0	$A_1BA_3Na^+$	597,638
630,0	5,2	6,0	A ₅ BNa ⁺	629,744
824,6	12,9	11,9	$BA_3BA_1H^+$	825,916
1118,3	3,7	3,5	BA ₈ BNa ⁺	1118,268
1208,4	8,0	9,3	BA ₈ BA ₁ Na ⁺	1208,368
1242,5	4,4	5,3	$BA_1BA_5BH^+$	1242,436

PODSUMOWANIE

Analiza obecności grup polarnych w cząsteczkach zsyntezowanych poliuretanów, wyznaczonej na podstawie widm ¹H NMR, oraz różnic intensywności sygnałów w widmie MALDI-TOF, pochodzących od określonych struktur jonu molekularnego pozwoliła na określenie zmian w strukturze chemicznej wytworzonych związków po ich biologicznej degradacji.

Pod wpływem oddziaływania środowiska gleby na próbki polimeru stwierdzono zwiększanie się polarności struktur chemicznych PUR zsyntezowanego z alifatycznego diizocyjanianu HDI i oligo(oksypropyleno)diolu Rokopol 7P wraz z postępem biodegradacji. Zmiany te powodują wzrost hydrofilowego charakteru poliuretanu, świadcząc jednocześnie o jego podatności na biodegradację.

W przypadku poliuretanów otrzymanych z aromatycznego diizocyjanianu (MDI) i polieteroli PPG lub PTHF, poddanych biologicznej degradacji nie stwierdzono istotnych różnic wartości współczynnika κ. Brak zmian świadczy o zachowaniu hydrofobowego charakteru struktur takich poliuretanów po biodegradacji.

Powyższe wnioski potwierdzono analizą widm MALDI-TOF próbek wytworzonych poliuretanów. W przypadku PUR zsyntezowanego z HDI i Rokopolu 7P wzrost udziału jonów molekularnych o małej masie cząsteczkowej oraz zmniejszenie udziału jonów o dużej masie cząsteczkowej jest dowodem na przebiegającą fragmentację łańcuchów w wyniku działania mikroorganizmów glebowych.

Brak takich zmian w strukturze próbek poliuretanów otrzymywanych z MDI i PPG lub PTHF po oddziaływa-

niu mikroorganizmów glebowych, świadczy o ich odporności na biologiczną degradację.

Zagadnienia oceny podatności polieterouretanów alifatycznych i aromatycznych na degradację w glebie są bardzo ważne zarówno z punktu widzenia poznawczego, jak i aplikacyjnego.

Wskazanie poliuretanów o określonej odporności na biologiczną degradację daje bowiem możliwość ich zastosowania w środowisku jako, np. materiały ochronne i izolacyjne, mogą zatem być alternatywą dla polimerów wykorzystywanych obecnie.

Określenie podatności na degradację daje również szanse na utylizacje poliuretanowych odpadów przy użyciu mikroorganizmów glebowych na drodze recyklingu biologicznego.

LITERATURA

- Randall D.: "The Polyurethanes Book", J. Wiley & Sons Ltd. 2002.
- 2. Oertel G.: "Polyurethane Handbook" wyd. 2, Danser Publisher, New York 1994.
- 3. Wirpsza Z.: "Poliuretany, chemia, technologia, zastosowanie", WNT, Warszawa 1991.
- Szlezyngier W.: "Tworzywa sztuczne", t. 3., Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 1999, rozdz. IV.
- 5. Olczyk W.: "Poliuretany", WNT, Warszawa 1968.
- 6. Król P.: "Linear Polyurethanes", Leiden-Bostonn 2008.
- "Chemia polimerów" tom III "Podstawowe polimery syntetyczne i ich zastosowanie" (red. Florjańczyk Z., Penczek S.), Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 1998.
- 8. Kozłowska A.: Tworzywa sztuczne i chemia 2004, 3, 25.
- 9. Kaczmarek H., Bajer K.: Polimery 2006, 51, 719.
- 10. Kaczmarek H., Bajer K.: Polimery 2007, 52, 13.
- 11. Fabrycy E.: "Recycling tworzyw sztucznych", Szczecin 1993, mat. konf., str. 153–171.
- 12. PN-EN ISO 846:1997 Tworzywa sztuczne. Ocena działania mikroorganizmów.
- 13. Cosgrove L., McGeechan P. L., Robson G. D., Handley P. S.: *Appl. Environ. Microbiol.* 2007, **73** (18), 5817.
- 14. Umare Suresh S., Chandure Ajay S.: *Chem. Eng. J.* 2008, **142**, 65.
- 15. Shah A. A., Hasan F., Akhter J. I., Hameed A., Ahmed S.: *Annal. Microbiol.* 2008, **58** (3), 381.
- 16. Urgun-Demirtas M., Singh D., Pagilla K.: *Polym. Degrad. Stab.* 2007, **92**, 1599.
- 17. Stagg H. E.: The Analyst 1966, 7, 557.
- 18. Król P., Król B.: Polimery 2010, 55, 440.