Chung, D. D. L. Carbon Fiber Composites. Carbon Fiber Composites (2012). doi:10.1016/C2009-0-26078-8.
Google Scholar
Kobets, L. P. & Deev, I. S. Carbon fibres: Structure and mechanical properties. Compos. Sci. Technol. (1998) doi:10.1016/S0266-3538(97)00088-2.
Google Scholar
Mayer Paulina & Kaczmar Jacek W. Właściwości i zastosowania włókien węglowych i szklanych. Tworzywa Sztuczne i Chem. 6, 52–56 (2008).
Google Scholar
Noisternig, J. F. Carbon fibre composites as stay cables for bridges. Appl. Compos. Mater. (2000) doi:10.1023/a:1008946132034.
Google Scholar
Wambua, P., Ivens, J. & Verpoest, I. Natural fibres: Can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. (2003) doi:10.1016/S0266-3538(03)00096-4.
Google Scholar
Kompozyty zbrojone włóknem węglowym. https://materialyinzynierskie.pl/kompozyty-zbrojone-wloknem-weglowym-cfrp/.
Google Scholar
Wacław Królikowski. Tworzywa wzmocnione i włókna wzmacniające. (Wydawnictwa Naukowo-Techniczne, 1988).
Google Scholar
van der Woude, L. H. V., de Groot, S. & Janssen, T. W. J. Manual wheelchairs: Research and innovation in rehabilitation, sports, daily life and health. Med. Eng. Phys. (2006) doi:10.1016/j.medengphy.2005.12.001.
Google Scholar
Chand S. Review Carbon Fibers for Composites. J. Mater. Sci. 35, 1303–1313 (2000).
Google Scholar
Weitzsacker, C. L., Xie, M. & Drzal, L. T. Using XPS to investigate fiber/matrix chemical interactions in carbon-fiber-reinforced composites. Surf. Interface Anal. (1997) doi:10.1002/(SICI)1096-9918(199702)25:2<53::AID-SIA222>3.0.CO;2-E.
Google Scholar
Delamar, M. et al. Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts: Application to carbon epoxy composites. Carbon N. Y. (1997) doi:10.1016/S0008-6223(97)00010-9.
Google Scholar
Ibarra, L., Macias, A. & Palma, E. Stress-strain and stress relaxation in oxidated short carbon fiber-thermoplastic elastomer composites. J. Appl. Polym. Sci. (1996) doi:10.1002/(SICI)1097-4628(19960926)61:13<2447::AID-APP24>3.0.CO;2-#.
Google Scholar
Chukov, D. I., Stepashkin, A. A., Gorshenkov, M. V., Tcherdyntsev, V. V. & Kaloshkin, S. D. Surface modification of carbon fibers and its effect on the fiber-matrix interaction of UHMWPE based composites. J. Alloys Compd. (2014) doi:10.1016/j.jallcom.2012.11.048.
Google Scholar
Tiwari, S., Bijwe, J. & Panier, S. Tribological studies on polyetherimide composites based on carbon fabric with optimized oxidation treatment. Wear (2011) doi:10.1016/j.wear.2010.11.052.
Google Scholar
Handbook of Nanocomposite Supercapacitor Materials III. Selection. (Springer International Publishing, 2021).
Google Scholar
Tang, X. & Yan, X. Dip-coating for fibrous materials: mechanism, methods and applications. Journal of Sol-Gel Science and Technology at https://doi.org/10.1007/s10971-016-4197-7 (2017).
Google Scholar
Li, Y., Wang, X. & Sun, J. Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chem. Soc. Rev. (2012) doi:10.1039/c2cs35107b.
Google Scholar
L Bacáková, V Starý, O Kofronová, V. L. Polishing and coating carbon fiber-reinforced carbon composites with a carbon-titanium layer enhances adhesion and growth of osteoblast-like MG63 cells and vascular smooth muscle cells in vitro. J Biomed Mater Res. 54(4), 567–578 (2001).
Google Scholar
Rajzer, I., Menaszek, E., Bacakova, L., Orzelski, M. & Błazewicz, M. Hyaluronic acid-coated carbon nonwoven fabrics as potential material for repair of osteochondral defects. Fibres Text. East. Eur. 99, 102–107 (2013).
Google Scholar
Liu, Y. T. et al. Biomimetic fabrication and biocompatibility of hydroxyapatite/chitosan nanohybrid coatings on porous carbon fiber felts. Mater. Lett. (2014) doi:10.1016/j.matlet.2014.04.117.
Google Scholar
Kim, M. Il et al. Mechanical and thermal properties of epoxy composites containing zirconium oxide impregnated halloysite nanotubes. Coatings (2017) doi:10.3390/coatings7120231.
Google Scholar
Navarro, C. H. et al. Friction and wear properties of poly(methyl methacrylate)-hydroxyapatite hybrid coating on UHMWPE substrates. Wear (2012) doi:10.1016/j.wear.2012.02.004.
Google Scholar
Janjic, S. et al. Biologically active fibers based on chitosan-coated lyocell fibers. Carbohydr. Polym. (2009) doi:10.1016/j.carbpol.2009.03.033.
Google Scholar
Fraczek-Szczypta, A. et al. The structure and properties of the carbon non-wovens modified with bioactive nanoceramics for medical applications. Mater. Sci. Eng. C (2015) doi:10.1016/j.msec.2015.03.021.
Google Scholar
Frączyk, J. et al. Chemical modification as a method of improving biocompatibility of carbon nonwovens. Materials (Basel). (2021) doi:10.3390/ma14123198.
Google Scholar
Prengel, H. G., Pfouts, W. R. & Santhanam, A. T. State of the art in hard coatings for carbide cutting tools. Surf. Coatings Technol. (1998) doi:10.1016/S0257-8972(96)03061-7.
Google Scholar
Silva, F., Martinho, R., Andrade, M., Baptista, A. & Alexandre, R. Improving the wear resistance of moulds for the injection of glass fibre-reinforced plastics using PVD coatings: A comparative study. Coatings (2017) doi:10.3390/coatings7020028.
Google Scholar
Skordaris, G. et al. Film thickness effect on mechanical properties and milling performance of nano-structured multilayer PVD coated tools. Surf. Coatings Technol. (2016) doi:10.1016/j.surfcoat.2016.09.026.
Google Scholar
Abdullah, M. Z. Bin et al. Metal Release of Multilayer Coatings by Physical Vapour Deposition (PVD). in Procedia Engineering (2016). doi:10.1016/j.proeng.2016.06.612.
Google Scholar
Imbeni, V., Martini, C., Lanzoni, E., Poli, G. & Hutchings, I. M. Tribological behaviour of multi-layered PVD nitride coatings. Wear (2001) doi:10.1016/S0043-1648(01)00706-2.
Google Scholar
Panjan, P., Drnovšek, A., Gselman, P., Čekada, M. & Panjan, M. Review of growth defects in thin films prepared by PVD techniques. Coatings at https://doi.org/10.3390/COATINGS10050447 (2020).
Google Scholar
Rao, D. S., Valleti, K., Joshi, S. V. & Janardhan, G. R. Processing-structure-property relationships in electron beam physical vapor deposited yttria stabilized zirconia coatings. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. (2011) doi:10.1116/1.3563600.
Google Scholar
Panjan, P. et al. Surface density of growth defects in different PVD hard coatings prepared by sputtering. in Vacuum (2012). doi:10.1016/j.vacuum.2011.07.013.
Google Scholar
Andréani, A. S., Poulon-Quintin, A. & Rebillat, F. Oxidation of refractory metallic coatings on carbon fibers heated up to 1850°C. Surf. Coatings Technol. 205, 1262–1267 (2010).
Google Scholar
Bard, S., Schönl, F., Demleitner, M. & Altstädt, V. Copper and nickel coating of carbon fiber for thermally and electrically conductive fiber reinforced composites. Polymers (Basel). (2019) doi:10.3390/polym11050823.
Google Scholar
Yu, S. et al. RTA-treated carbon fiber/copper core/shell hybrid for thermally conductive composites. ACS Appl. Mater. Interfaces (2014) doi:10.1021/am500871b.
Google Scholar
Devine, D. M. et al. Coating of carbon fiber-reinforced polyetheretherketone implants with titanium to improve bone apposition. J. Biomed. Mater. Res. - Part B Appl. Biomater. 101, 591–598 (2013).
Google Scholar
Ahvenniemi, E. et al. Review Article: Recommended reading list of early publications on atomic layer deposition—Outcome of the “Virtual Project on the History of ALD”. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. (2017) doi:10.1116/1.4971389.
Google Scholar
Suntola, T. & Antson, J. Method for producing compound thin films. US Pat. 4,058,430 (1977).
Google Scholar
Knez, M., Nielsch, K. & Niinistö, L. Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Advanced Materials at https://doi.org/10.1002/adma.200700079 (2007).
Google Scholar
Miikkulainen, V., Leskelä, M., Ritala, M. & Puurunen, R. L. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. Journal of Applied Physics at https://doi.org/10.1063/1.4757907 (2013).
Google Scholar
George, S. M. Atomic layer deposition: An overview. Chem. Rev. (2010) doi:10.1021/cr900056b.
Google Scholar
Mohseni, H. & Scharf, T. W. Atomic layer deposition of ZnO/Al 2 O 3 /ZrO 2 nanolaminates for improved thermal and wear resistance in carbon-carbon composites . J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 30, 01A149 (2012).
Google Scholar
Miikkulainen, V., Leskelä, M., Ritala, M. & Puurunen, R. L. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. J. Appl. Phys. 113, (2013).
Google Scholar
Puurunen, R. L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 97, (2005).
Google Scholar
Jones, Anthony C., M. L. H. Chemical vapour deposition: precursors, processes and applications. R. Soc. Chem. (2009).
Google Scholar
Parsons, G. N., George, S. M. & Knez, M. Progress and future directions for atomic layer deposition and ALD-based chemistry. MRS Bull. (2011) doi:10.1557/mrs.2011.238.
Google Scholar
Meng, X., Yang, X. Q. & Sun, X. Emerging applications of atomic layer deposition for lithium-ion battery studies. Advanced Materials at https://doi.org/10.1002/adma.201200397 (2012).
Google Scholar
Lim, J. Y. et al. Homogeneous 2D MoTe2 p–n Junctions and CMOS Inverters formed by Atomic-Layer-Deposition-Induced Doping. Adv. Mater. (2017) doi:10.1002/adma.201701798.
Google Scholar
Wang, X. et al. Improved integration of ultra-thin high-k dielectrics in few-layer MoS2 FET by remote forming gas plasma pretreatment. Appl. Phys. Lett. (2017) doi:10.1063/1.4975627.
Google Scholar
Wen, L. et al. Cost-effective atomic layer deposition synthesis of Pt nanotube arrays: Application for high performance supercapacitor. Small (2014) doi:10.1002/smll.201400436.
Google Scholar
Choi, K. H., Ali, K., Kim, C. Y. & Muhammad, N. M. Characterization of al2o3 thin films fabricated at low temperature via atomic layer deposition on pen substrates. Chem. Vap. Depos. (2014) doi:10.1002/cvde.201307082.
Google Scholar
Roy, A. K. et al. Atomic layer deposition of alumina onto carbon fibers. J. Am. Ceram. Soc. (2011) doi:10.1111/j.1551-2916.2010.04340.x.
Google Scholar
Roy, A. K., Schulze, S., Hietschold, M. & Goedel, W. A. Oxidation protection of carbon fibers by coating with alumina and/or titania using atomic layer deposition. Carbon N. Y. (2012) doi:10.1016/j.carbon.2011.09.023.
Google Scholar
Dey, N. K. et al. Adsorption and photocatalytic degradation of methylene blue over TiO 2 films on carbon fiber prepared by atomic layer deposition. J. Mol. Catal. A Chem. (2011) doi:10.1016/j.molcata.2011.01.010.
Google Scholar
Wu, L. et al. Atomic layer deposition-assisted growth of CuAl LDH on carbon fiber as a peroxidase mimic for colorimetric determination of H2O2 and glucose. New J. Chem. (2019) doi:10.1039/c8nj06217j.
Google Scholar
Qi, H., Liu, J., Deng, Y., Gao, S. & Mäder, E. Cellulose fibres with carbon nanotube networks for water sensing. J. Mater. Chem. A (2014) doi:10.1039/c3ta14820c.
Google Scholar
Foruzanmehr, Mr., Vuillaume, P. Y., Robert, M. & Elkoun, S. The effect of grafting a nano-TiO2 thin film on physical and mechanical properties of cellulosic natural fibers. Mater. Des. (2015) doi:10.1016/j.matdes.2015.06.105.
Google Scholar
Roberts, M., Huang, A. F., Johns, P. & Owen, J. Dip-spin coating of reticulated vitreous carbon with composite materials to act as an electrode for 3D microstructured lithium ion batteries. J. Power Sources (2013) doi:10.1016/j.jpowsour.2012.09.103.
Google Scholar
Pu, D. et al. Order-enhanced silver nanowire networks fabricated by two-step dip-coating as polymer solar cell electrodes. RSC Adv. (2015) doi:10.1039/c5ra20097k.
Google Scholar
Tang, X. et al. Functionalization of cotton fabric with graphene oxide nanosheet and polyaniline for conductive and UV blocking properties. Synth. Met. (2015) doi:10.1016/j.synthmet.2015.01.017.
Google Scholar
Kafizas, A., Parry, S. A., Chadwick, A. V., Carmalt, C. J. & Parkin, I. P. An EXAFS study on the photo-assisted growth of silver nanoparticles on titanium dioxide thin-films and the identification of their photochromic states. Phys. Chem. Chem. Phys. (2013) doi:10.1039/c3cp44513e.
Google Scholar