Budzik G., Woźniak J., Przeszłowski Ł. Druk 3D jako element przemysłu przyszłości, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 2022, ISBN 978-83-7934-624-0
Google Scholar
Rokaya, D., Srimaneepong, V., Sapkota, J., Qin, J., Siraleartmukul, K., & Siriwongrungson, V. (2018). Polymeric materials and films in dentistry: An overview. Journal of advanced research, 14, 25-34. https://doi.org/10.1016/j.jare.2018.05.001
Google Scholar
Michniowski A., Szyszkowska A., Galas D. Nowoczesne trendy w medycynie,TYGIEL, Lublin 2015, str. 7-14
Google Scholar
Barazanchi, A., Li, K. C., Al‐Amleh, B., Lyons, K., & Waddell, J. N. (2017). Additive technology: update on current materials and applications in dentistry. Journal of Prosthodontics, 26(2), 156-163. https://doi.org/10.1111/jopr.12510
Google Scholar
Kadambi, P., Luniya, P., & Dhatrak, P. (2021). Current advancements in polymer/polymer matrix composites for dental im-plants: A systematic review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.12.396
Google Scholar
Kroczek K. and all, Characterisation of Selected Materials in Medical Applications, Polymers 2022, 14, 1526. https://doi.org/10.3390/polym14081526
Google Scholar
Cunha, J. Adam M., i in. „Evaluation of PC-ISO for Customized, 3D Printed, Gynecologic Ir-192 HDR Brachytherapy Applicators”. Journal of Applied Clinical Medical Physics, t. 16, nr 1, 2015, s. 246–53, https://doi.org/10.1120/jacmp.v16i1.5168
Google Scholar
Tham, D. Q., Huynh, M. D., Linh, N. T. D., Van, D. T. C., Cong, D. V., Dung, N. T. K., ... & Lam, T. D. (2021). PMMA Bone Cements Modified with Silane-Treated and PMMA-Grafted Hydroxyapatite Nanocrystals: Preparation and Characterization. Polymers, 13(22), 3860. https://doi.org/10.3390/polym13223860
Google Scholar
Olędzka E., Sobczak M., Kołodziejski W. Polimery w medycynie- przegląd dotychczasowych osiągnięć, Sieć Badawcza Łukasiewicz– Instytut Chemii Przemysłowej, Warszawa 2007, str. 795-803
Google Scholar
Kwidziński M., Wrzecionek M., Ruśkowski P., Gadomska- Gajadhur A. Biodegradowalne poliestry stosowane w medycynie, Warszawa 2020, str. 27-29
Google Scholar
Dobrzelecka A., Mazurkiewicz A. Przegląd materiałów stosowanych do produkcji sztucznych ścięgien i wiązadeł, Koło Naukowe Bio- Med 2015, str. 35-40
Google Scholar
Navidfar, Amir, i in. „A Study on Polyurethane Hybrid Nanocomposite Foams Reinforced with Multiwalled Carbon Nanotubes and Silica Nanoparticles”. Polymer-Plastics Technology and Engineering, t. 57, nr 14, 2018, s. 1463–73, https://doi.org/10.1080/03602559.2017.1410834.
Google Scholar
Nampoothiri, D. P., Subhash, A. K., Aboobacker, F., Mohan, A., & Keerthana, K. R. (2018). Biomimetic Materials in Implantology. Int J Oral Care Res, 6(2), 93-96.
Google Scholar
DeStefano, V.; Khan, S.; Tabada, A. Applications of PLA in Modern Medicine. Eng. Regen. 2020, 1, 76–87. https://doi.org/10.1016/j.engreg.2020.08.002
Google Scholar
Tredwin, C.J.; Young, A.M.; Abou Neel, E.A.; Georgiou, G.; Knowles, J.C. Hydroxyapatite, Fluor-Hydroxyapatite and Fluorapatite Produced via the Sol–Gel Method: Dissolution Behaviour and Biological Properties after Crystallisation. J. Mater. Sci. Mater. Med.2014, 25, 47–53.
Google Scholar
Marciniak, J. Biomaterialy; Wydawn, Politechniki Slaskiej: Gliwice, Poland, 2002; ISBN 978-83-7335-031-1.
Google Scholar
Świeczko-Z˙ urek, B. Biomateriały; Wydawn, Politechniki Gdanskiej: Gdańsk, Poland, 2009.
Google Scholar
Wang, Shaofeng, i in. „Synthesis and Characterization of Polycarbonate/ABS/Montmorillonite Nanocomposites”. Polymer Degradation and Stability, t. 80, nr 1, Stycze 2003, s. 157–61, https://doi.org/10.1016/S0141-3910(02)00397-X.
Google Scholar
Slosarczyk, A. Bioceramika Hydroksyapatytowa; Polskie Towarzystwo Ceramiczne: Krakow, Poland, 1997; ISBN 978-83-7108-015-9.
Google Scholar
Chia, H.N.;Wu, B.M. Recent Advances in 3D Printing of Biomaterials. J. Biol. Eng. 2015, 9, 4. https://doi.org/10.1186/s13036-015-0001-4
Google Scholar
Persson, M.; Lorite, G.S.; Kokkonen, H.E.; Cho, S.-W.; Lehenkari, P.P.; Skrifvars, M.; Tuukkanen, J. Effect of Bioactive Extruded PLA/HA Composite Films on Focal Adhesion Formation of Preosteoblastic Cells. Colloids Surf. B Biointerfaces 2014, 121, 409–416. https://doi.org/10.1016/j.colsurfb.2014.06.029.
Google Scholar
Elkawash, Hesham, i in. „Physical and Mechanical Performance of Bentonite and Barite Loaded Low Density Polyethylene Composites: Influence of Surface Silanization of Minerals”. Journal of Composite Materials, t. 54, nr 28, grudzień 2020, s. 4359–68, https://doi.org/10.1177/0021998320931906
Google Scholar
Mandal, Moon, i Tarun K. Maji. „Preparation, Physical Properties and Ultraviolet Resistance of Wood Nanocomposites Based on Modified Soybean Oil and Bentonite”. Wood Material Science & Engineering, t. 14, nr 6, listopad 2019, s. 381–91, https://doi.org/10.1080/17480272.2018.1463289.
Google Scholar
Klapiszewski, Lukasz, i in. „Influence of Processing Conditions on the Thermal Stability and Mechanical Properties of PP/Silica-Lignin Composites”. International Journal of Polymer Science, 2016, s. 1627258, https://doi.org/10.1155/2016/1627258.
Google Scholar
Niaza, K.V.; Senatov, F.S.; Kaloshkin, S.D.; Maksimkin, A.V.; Chukov, D.I. 3D-Printed Scaffolds Based on PLA/HA Nanocomposites for Trabecular Bone Reconstruction. J. Phys. Conf. Ser. 2016, 741, Open 012068 DOI 10.1088/1742-6596/741/1/012068
Google Scholar
J Li, XL Lu, YF Zheng Effect of surface modified hydroxyapatite on the tensile property improvement of HA/PLA composite, Applied Surface Science, 2008, 494-497, https://doi.org/10.1016/j.apsusc.2008.06.067
Google Scholar
Turek P., Budzik G., Oleksy M. and Bulanda K., “Polymer materials used in medicine processed by additive techniques”, Polimery, vol. 65, no. 07/08, pp. 510–515, 2020, https://doi.org/10.14314/polimery.2020.7.2.
Google Scholar