O. Abdulhameed, A. Al-Ahmari, W. Ameen, and S. H. Mian, “Additive manufacturing: Challenges, trends, and applications,” Adv. Mech. Eng., vol. 11, no. 2, pp. 1–27, 2019, doi: 10.1177/1687814018822880.
Google Scholar
P. E. Romero, J. Arribas-Barrios, O. Rodriguez-Alabanda, R. González-Merino, and G. Guerrero-Vaca, “Manufacture of polyurethane foam parts for automotive industry using FDM 3D printed molds,” CIRP J. Manuf. Sci. Technol., vol. 32, pp. 396–404, 2021, doi: https://doi.org/10.1016/j.cirpj.2021.01.019.
Google Scholar
H. Klippstein, H. Hassanin, A. Diaz De Cerio Sanchez, Y. Zweiri, and L. Seneviratne, “Additive Manufacturing of Porous Structures for Unmanned Aerial Vehicles Applications,” Adv. Eng. Mater., vol. 20, no. 9, p. 1800290, Sep. 2018, doi: https://doi.org/10.1002/adem.201800290.
Google Scholar
I. Durgun and R. Ertan, “Experimental investigation of FDM process for improvement of mechanical properties and production cost,” Rapid Prototyp. J., vol. 20, no. 3, pp. 228–235, 2014, doi: 10.1108/RPJ-10-2012-0091.
Google Scholar
A. K. Sood, R. K. Ohdar, and S. S. Mahapatra, “Parametric appraisal of mechanical property of fused deposition modelling processed parts,” Mater. Des., vol. 31, no. 1, pp. 287–295, 2010, doi: 10.1016/j.matdes.2009.06.016.
Google Scholar
Steve Upcraft and Richard Fletcher, “The rapid prototyping technologies,” Assem. Autom., vol. 23, no. 4, pp. 318–330, 2003.
Google Scholar
C. K. Chua, C. Feng, C. W. Lee, and G. Q. Ang, “Rapid investment casting: Direct and indirect approaches via model maker II,” Int. J. Adv. Manuf. Technol., vol. 25, no. 1–2, pp. 26–32, 2005, doi: 10.1007/s00170-004-1865-5.
Google Scholar
S. H. Masood and W. Q. Song, “Development of new metal/polymer materials for rapid tooling using Fused deposition modelling,” Mater. Des., vol. 25, no. 7, pp. 587–594, 2004, doi: 10.1016/j.matdes.2004.02.009.
Google Scholar
W. C. Smith and R. W. Dean, “Structural characteristics of fused deposition modeling polycarbonate material,” Polym. Test., vol. 32, no. 8, pp. 1306–1312, 2013, doi: 10.1016/j.polymertesting.2013.07.014.
Google Scholar
S. Kumar and J. P. Kruth, “Composites by rapid prototyping technology,” Mater. Des., vol. 31, no. 2, pp. 850–856, 2010, doi: 10.1016/j.matdes.2009.07.045.
Google Scholar
C. K. Chua, S. M. Chou, and T. S. Wong, “A study of the state-of-the-art rapid prototyping technologies,” Int. J. Adv. Manuf. Technol., vol. 14, no. 2, pp. 146–152, 1998, doi: 10.1007/BF01322222.
Google Scholar
R. Singh, P. Bedi, F. Fraternali, and I. P. S. Ahuja, “Effect of single particle size, double particle size and triple particle size Al2O3 in Nylon-6 matrix on mechanical properties of feed stock filament for FDM,” Compos. Part B Eng., vol. 106, pp. 20–27, 2016, doi: 10.1016/j.compositesb.2016.08.039.
Google Scholar
E. A. Papon and A. Haque, “Tensile properties, void contents, dispersion and fracture behaviour of 3D printed carbon nanofiber reinforced composites,” J. Reinf. Plast. Compos., vol. 37, no. 6, pp. 381–395, 2018, doi: 10.1177/0731684417750477.
Google Scholar
A. Dey and N. Yodo, “A systematic survey of FDM process parameter optimization and their influence on part characteristics,” J. Manuf. Mater. Process., vol. 3, no. 3, 2019, doi: 10.3390/jmmp3030064.
Google Scholar
G. Gao, F. Xu, and J. Xu, “Parametric Optimization of FDM Process for Improving Mechanical Strengths Using Taguchi Method and Response Surface Method: A Comparative Investigation,” Machines, vol. 10, no. 9, 2022, doi: 10.3390/machines10090750.
Google Scholar
J. Singh, K. K. Goyal, R. Kumar, and V. Gupta, “Influence of process parameters on mechanical strength, build time, and material consumption of 3D printed polylactic acid parts,” Polym. Compos., vol. 43, no. 9, pp. 5908–5928, Sep. 2022, doi: 10.1002/PC.26849.
Google Scholar
N. Vinoth Babu et al., “Influence of slicing parameters on surface quality and mechanical properties of 3D-printed CF/PLA composites fabricated by FDM technique,” Mater. Technol., vol. 37, no. 9, pp. 1008–1025, 2022, doi: 10.1080/10667857.2021.1915056.
Google Scholar
M. Kam, A. İpekçi, and Ö. Şengül, “Investigation of the effect of FDM process parameters on mechanical properties of 3D printed PA12 samples using Taguchi method,” J. Thermoplast. Compos. Mater., 2021, doi: 10.1177/08927057211006459.
Google Scholar
J. Torres, M. Cole, A. Owji, Z. DeMastry, and A. P. Gordon, “An approach for mechanical property optimization of fused deposition modeling with polylactic acid via design of experiments,” Rapid Prototyp. J., vol. 22, no. 2, pp. 387–404, 2016, doi: 10.1108/RPJ-07-2014-0083.
Google Scholar
B. Akhoundi and A. H. Behravesh, “Effect of Filling Pattern on the Tensile and Flexural Mechanical Properties of FDM 3D Printed Products,” Exp. Mech., vol. 59, no. 6, pp. 883–897, 2019, doi: 10.1007/s11340-018-00467-y.
Google Scholar
N. Hill and M. Haghi, “Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate,” Rapid Prototyp. J., vol. 20, no. 3, pp. 221–227, 2014, doi: 10.1108/RPJ-04-2013-0039.
Google Scholar
S. H. Ahn, M. Montero, D. Odell, S. Roundy, and P. K. Wright, Anisotropic material properties of fused deposition modeling ABS, vol. 8, no. 4. 2002. doi: 10.1108/13552540210441166.
Google Scholar
L. Marșavina et al., “Effect of the manufacturing parameters on the tensile and fracture properties of FDM 3D-printed PLA specimens,” Eng. Fract. Mech., vol. 274, no. September, 2022, doi: 10.1016/j.engfracmech.2022.108766.
Google Scholar
I. M. Alarifi, “Investigation of the dynamic mechanical analysis and mechanical response of 3D printed nylon carbon fiber composites with different build orientation,” Polym. Compos., vol. 43, no. 8, pp. 5353–5363, Aug. 2022, doi: 10.1002/PC.26838.
Google Scholar
J. Lee and A. Huang, “Fatigue analysis of FDM materials,” Rapid Prototyp. J., vol. 19, no. 4, pp. 291–299, 2013, doi: 10.1108/13552541311323290.
Google Scholar
Z. Zhang, Y. Long, Z. Yang, K. Fu, and Y. Li, “An investigation into printing pressure of 3D printed continuous carbon fiber reinforced composites,” Compos. Part A Appl. Sci. Manuf., vol. 162, no. July, p. 107162, 2022, doi: 10.1016/j.compositesa.2022.107162.
Google Scholar
Y. P. Shaik, J. Schuster, H. R. Katherapalli, and A. Shaik, “3D Printing under High Ambient Pressures and Improvement of Mechanical Properties of Printed Parts,” J. Compos. Sci., vol. 6, no. 1, 2022, doi: 10.3390/jcs6010016.
Google Scholar
D. Espalin, J. A. Ramirez, F. Medina, and R. Wicker, “Multi-material, multi-technology FDM: Exploring build process variations,” Rapid Prototyp. J., vol. 20, no. 3, pp. 236–244, 2014, doi: 10.1108/RPJ-12-2012-0112.
Google Scholar
L. Le, M. A. Rabsatt, H. Eisazadeh, and M. Torabizadeh, “Reducing print time while minimizing loss in mechanical properties in consumer FDM parts,” Int. J. Light. Mater. Manuf., vol. 5, no. 2, pp. 197–212, 2022, doi: 10.1016/j.ijlmm.2022.01.003.
Google Scholar
M. N. Ahmad et al., “Application of Taguchi Method to Optimize the Parameter of Fused Deposition Modeling (FDM) Using Oil Palm Fiber Reinforced Thermoplastic Composites,” Polymers (Basel)., vol. 14, no. 11, 2022, doi: 10.3390/polym14112140.
Google Scholar
O. A. Mohamed, S. H. Masood, J. L. Bhowmik, M. Nikzad, and J. Azadmanjiri, “Effect of Process Parameters on Dynamic Mechanical Performance of FDM PC/ABS Printed Parts Through Design of Experiment,” J. Mater. Eng. Perform., vol. 25, no. 7, pp. 2922–2935, 2016, doi: 10.1007/s11665-016-2157-6.
Google Scholar
S. Khan, K. Joshi, and S. Deshmukh, “A comprehensive review on effect of printing parameters on mechanical properties of FDM printed parts,” Mater. Today Proc., vol. 50, pp. 2119–2127, 2022, doi: https://doi.org/10.1016/j.matpr.2021.09.433.
Google Scholar
D. A. Roberson, C. M. Shemelya, E. MacDonald, and R. B. Wicker, “Expanding the applicability of FDM-type technologies through materials development,” 25th Annu. Int. Solid Free. Fabr. Symp. � An Addit. Manuf. Conf. SFF 2014, pp. 514–524, 2014.
Google Scholar
K. Vishal, K. Rajkumar, P. Sabarinathan, and V. Dhinakaran, “Mechanical and Wear Characteristics Investigation on 3D Printed Silicon Filled Poly (Lactic Acid) Biopolymer Composite Fabricated by Fused Deposition Modeling,” Silicon 2022, pp. 1–13, Jan. 2022, doi: 10.1007/S12633-022-01712-9.
Google Scholar
S. M. Lebedev, O. S. Gefle, E. T. Amitov, D. V. Zhuravlev, D. Y. Berchuk, and E. A. Mikutskiy, “Mechanical properties of PLA-based composites for fused deposition modeling technology,” Int. J. Adv. Manuf. Technol., vol. 97, no. 1–4, pp. 511–518, 2018, doi: 10.1007/s00170-018-1953-6.
Google Scholar
C. Kaynak and S. D. Varsavas, “Performance comparison of the 3D-printed and injection-molded PLA and its elastomer blend and fiber composites,” J. Thermoplast. Compos. Mater., vol. 32, no. 4, pp. 501–520, 2019, doi: 10.1177/0892705718772867.
Google Scholar
K. Prashantha and F. Roger, “Multifunctional properties of 3D printed poly(lactic acid)/graphene nanocomposites by fused deposition modeling,” J. Macromol. Sci. Part A Pure Appl. Chem., vol. 54, no. 1, pp. 24–29, 2017, doi: 10.1080/10601325.2017.1250311.
Google Scholar
F. Daniel, N. H. Patoary, A. L. Moore, L. Weiss, and A. D. Radadia, “Temperature-dependent electrical resistance of conductive polylactic acid filament for fused deposition modeling,” Int. J. Adv. Manuf. Technol., vol. 99, no. 5–8, pp. 1215–1224, 2018, doi: 10.1007/s00170-018-2490-z.
Google Scholar
Z. Hou, X. Tian, J. Zhang, and D. Li, “3D printed continuous fibre reinforced composite corrugated structure,” Compos. Struct., vol. 184, no. October 2017, pp. 1005–1010, 2018, doi: 10.1016/j.compstruct.2017.10.080.
Google Scholar
R. T. L. Ferreira, I. C. Amatte, T. A. Dutra, and D. Bürger, “Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers,” Compos. Part B Eng., vol. 124, pp. 88–100, 2017, doi: 10.1016/j.compositesb.2017.05.013.
Google Scholar
T. Hofstätter, D. B. Pedersen, G. Tosello, and H. N. Hansen, “Applications of Fiber-Reinforced Polymers in Additive Manufacturing,” Procedia CIRP, vol. 66, pp. 312–316, 2017, doi: 10.1016/j.procir.2017.03.171.
Google Scholar
X. Tian, T. Liu, C. Yang, Q. Wang, and D. Li, “Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites,” Compos. Part A Appl. Sci. Manuf., vol. 88, pp. 198–205, 2016, doi: 10.1016/j.compositesa.2016.05.032.
Google Scholar
R. Matsuzaki et al., “Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation,” Sci. Rep., vol. 6, no. February, pp. 1–7, 2016, doi: 10.1038/srep23058.
Google Scholar
T. Hofstätter et al., “Distribution and orientation of carbon fibers in polylactic acid parts produced by fused deposition modeling,” Proc. - ASPE/euspen 2016 Summer Top. Meet. Dimens. Accuracy Surf. Finish Addit. Manuf., pp. 44–49, 2016.
Google Scholar
X. Yao, C. Luan, D. Zhang, L. Lan, and J. Fu, “Evaluation of carbon fiber-embedded 3D printed structures for strengthening and structural-health monitoring,” Mater. Des., vol. 114, pp. 424–432, 2017, doi: 10.1016/j.matdes.2016.10.078.
Google Scholar
M. Ivey, G. W. Melenka, J. P. Carey, and C. Ayranci, “Characterizing short-fiber-reinforced composites produced using additive manufacturing,” Adv. Manuf. Polym. Compos. Sci., vol. 3, no. 3, pp. 81–91, 2017, doi: 10.1080/20550340.2017.1341125.
Google Scholar
N. Li, Y. Li, and S. Liu, “Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing,” J. Mater. Process. Technol., vol. 238, pp. 218–225, 2016, doi: 10.1016/j.jmatprotec.2016.07.025.
Google Scholar
A. Lanzotti, M. Grasso, G. Staiano, and M. Martorelli, “The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer,” Rapid Prototyp. J., vol. 21, no. 5, pp. 604–617, Jan. 2015, doi: 10.1108/RPJ-09-2014-0135.
Google Scholar
J. M. Chacón, M. A. Caminero, E. García-Plaza, and P. J. Núñez, “Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection,” Mater. Des., vol. 124, pp. 143–157, 2017, doi: https://doi.org/10.1016/j.matdes.2017.03.065.
Google Scholar
D. Moises, B. Lopez, and R. Ahmad, “Tensile Mechanical Behaviour of Multi-Polymer Sandwich Structures via Fused Deposition Modelling,” 2020.
Google Scholar
A. Galatas, H. Hassanin, Y. Zweiri, and L. Seneviratne, “Additive manufactured sandwich composite/ABS parts for unmanned aerial vehicle applications,” Polymers (Basel)., vol. 10, no. 11, 2018, doi: 10.3390/polym10111262.
Google Scholar
V. A. Radadiya and A. H. Gandhi, “A Study of Tensile Characteristics for Glass and Carbon Fiber Along with Sandwiched Reinforced ABS Composites,” J. Inst. Eng. Ser. C, vol. 103, no. 5, pp. 1049–1057, 2022, doi: 10.1007/s40032-022-00848-2.
Google Scholar
K. S. Boparai, R. Singh, and H. Singh, “Experimental investigations for development of Nylon6-Al-Al2O3 alternative FDM filament,” Rapid Prototyp. J., vol. 22, no. 2, pp. 217–224, 2016, doi: 10.1108/RPJ-04-2014-0052.
Google Scholar
L. Yang et al., “Effects of carbon nanotube on the thermal, mechanical, and electrical properties of PLA/CNT printed parts in the FDM process,” Synth. Met., vol. 253, no. December 2018, pp. 122–130, 2019, doi: 10.1016/j.synthmet.2019.05.008.
Google Scholar
L. Yang, S. Li, Y. Li, M. Yang, and Q. Yuan, “Experimental Investigations for Optimizing the Extrusion Parameters on FDM PLA Printed Parts,” J. Mater. Eng. Perform., vol. 28, no. 1, pp. 169–182, 2019, doi: 10.1007/s11665-018-3784-x.
Google Scholar
A. Mohanty et al., “Parametric optimization of parameters affecting dimension precision of FDM printed part using hybrid Taguchi-MARCOS-nature inspired heuristic optimization technique,” Mater. Today Proc., vol. 50, pp. 893–903, 2022, doi: https://doi.org/10.1016/j.matpr.2021.06.216.
Google Scholar
P. Ferretti et al., “tensile,” Polymers (Basel)., vol. 13, no. 13, 2021, doi: 10.3390/polym13132190.
Google Scholar
J. Lee et al., “Fabrication of poly(lactic acid)/Ti composite scaffolds with enhanced mechanical properties and biocompatibility via fused filament fabrication (FFF)–based 3D printing,” Addit. Manuf., vol. 30, no. June, p. 100883, 2019, doi: 10.1016/j.addma.2019.100883.
Google Scholar
M. S. Uddin, M. F. R. Sidek, M. A. Faizal, R. Ghomashchi, and A. Pramanik, “Evaluating Mechanical Properties and Failure Mechanisms of Fused Deposition Modeling Acrylonitrile Butadiene Styrene Parts,” J. Manuf. Sci. Eng. Trans. ASME, vol. 139, no. 8, pp. 1–12, 2017, doi: 10.1115/1.4036713.
Google Scholar
O. Bamiduro, G. Owolabi, M. A. Haile, and J. C. Riddick, “The influence of load direction, microstructure, raster orientation on the quasi-static response of fused deposition modeling ABS,” Rapid Prototyp. J., vol. 25, no. 3, pp. 462–472, 2019, doi: 10.1108/RPJ-04-2018-0087.
Google Scholar
M. Waseem et al., “Multi-response optimization of tensile creep behavior of PLA 3D printed parts using categorical response surface methodology,” Polymers (Basel)., vol. 12, no. 12, pp. 1–16, 2020, doi: 10.3390/polym12122962.
Google Scholar
N. Naveed, “Investigate the effects of process parameters on material properties and microstructural changes of 3D-printed specimens using fused deposition modelling (FDM),” Mater. Technol., vol. 36, no. 5, pp. 317–330, 2021, doi: 10.1080/10667857.2020.1758475.
Google Scholar
T. A. Son, P. S. Minh, and T. T. Do, “Effect of 3d printing parameters on the tensile strength of products,” Key Eng. Mater., vol. 863 KEM, no. May 2022, pp. 103–108, 2020, doi: 10.4028/www.scientific.net/KEM.863.103.
Google Scholar
A. Jaisingh Sheoran and H. Kumar, “Fused Deposition modeling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research,” Mater. Today Proc., vol. 21, no. xxxx, pp. 1659–1672, 2020, doi: 10.1016/j.matpr.2019.11.296.
Google Scholar
M. M. Hanon, L. Zsidai, and Q. Ma, “Accuracy investigation of 3D printed PLA with various process parameters and different colors,” Mater. Today Proc., vol. 42, pp. 3089–3096, 2021, doi: 10.1016/j.matpr.2020.12.1246.
Google Scholar
T. J. Coogan and D. O. Kazmer, “Rapid Prototyping Journal Bond and part strength in fused deposition modeling BOND AND PART STRENGTH IN FUSED DEPOSITION MODELING,” Rapid Prototyp. J. Rapid Prototyp. J. Iss Rapid Prototyp. J., vol. 23, no. 2, 2017, [Online]. Available: http://dx.doi.org/10.1108/RPJ-03-2016-0050
Google Scholar
C. P. Khunt, M. A. Makhesana, B. K. Mawandiya, and K. M. Patel, “Investigations on the influence of printing parameters during processing of biocompatible polymer in Fused Deposition Modelling (FDM),” Adv. Mater. Process. Technol., vol. 00, no. 00, pp. 1–17, 2021, doi: 10.1080/2374068X.2021.1927651.
Google Scholar
S. Garzon-Hernandez, D. Garcia-Gonzalez, A. Jérusalem, and A. Arias, “Design of FDM 3D printed polymers: An experimental-modelling methodology for the prediction of mechanical properties,” Mater. Des., vol. 188, p. 108414, 2020, doi: 10.1016/j.matdes.2019.108414.
Google Scholar
D. Banerjee, S. B. Mishra, M. S. Khan, and M. A. Kumar, “Mathematical approach for the geometrical deformation of fused deposition modelling build parts,” Mater. Today Proc., vol. 33, no. xxxx, pp. 5051–5054, 2020, doi: 10.1016/j.matpr.2020.02.842.
Google Scholar
Z. Xu, R. Fostervold, and S. M. J. Razavi, “Thickness effect on the mechanical behavior of PLA specimens fabricated via Fused Deposition Modeling,” Procedia Struct. Integr., vol. 33, no. C, pp. 571–577, 2021, doi: 10.1016/j.prostr.2021.10.063.
Google Scholar
C. A. Griffiths, J. Howarth, G. De Almeida-Rowbotham, A. Rees, and R. Kerton, “A design of experiments approach for the optimisation of energy and waste during the production of parts manufactured by 3D printing,” J. Clean. Prod., vol. 139, pp. 74–85, 2016, doi: 10.1016/j.jclepro.2016.07.182.
Google Scholar
H. K. Dave, A. R. Prajapati, S. R. Rajpurohit, N. H. Patadiya, and H. K. Raval, “Investigation on tensile strength and failure modes of FDM printed part using in-house fabricated PLA filament,” Adv. Mater. Process. Technol., vol. 00, no. 00, pp. 1–22, 2020, doi: 10.1080/2374068X.2020.1829951.
Google Scholar
S. Bhandari, R. A. Lopez-Anido, and D. J. Gardner, “Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing,” Addit. Manuf., vol. 30, p. 100922, 2019, doi: 10.1016/j.addma.2019.100922.
Google Scholar
L. Liang, T. Huang, S. Yu, W. Cao, and T. Xu, “Study on 3D printed graphene/carbon fiber multi-scale reinforced PLA composites,” Mater. Lett., vol. 300, no. May, p. 130173, 2021, doi: 10.1016/j.matlet.2021.130173.
Google Scholar