Schmaltz E, Melvin EC, Diana Z, Gunady EF, Rittschof D, Somarelli JA, et al. Plastic pollution solutions: emerging technologies to prevent and collect marine plastic pollution. Environ Int 2020;144:106067. https://doi.org/10.1016/j.envint.2020.106067.
Google Scholar
Giacovelli C, Zamparo A, Wehrli A AK. Single-use plastics: A roadmap for sustainability 2018:90.
Google Scholar
Harussani MM, Sapuan SM, Rashid U, Khalina A, Ilyas RA. Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic. Sci Total Environ 2022;803:149911. https://doi.org/10.1016/j.scitotenv.2021.149911.
Google Scholar
Hazrol MD, Sapuan SM, Zuhri MYM, Zainudin ES, Wahab NIA, Ilyas RA. Recent development in kenaf (Hibiscus cannabinus)-based biocomposites and their potential industrial applications: A review. Des. Sustain., Elsevier; 2021, p. 329–68. https://doi.org/10.1016/B978-0-12-819482-9.00007-1.
Google Scholar
Tarique J, Sapuan SM, Khalina A. Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Sci Rep 2021;11:1–17.
Google Scholar
Nurazzi NM, Harussani MM, Aisyah HA, Ilyas RA, Norrrahim MNF, Khalina A, et al. Treatments of natural fiber as reinforcement in polymer composites—a short review. Funct Compos Struct 2021;3.
Google Scholar
Chen S, Wu M, Wang C, Yan S, Lu P, Wang S. Developed Chitosan / Oregano Essential Oil Biocomposite Packaging Film Enhanced by Cellulose Nanofibril 2020.
Google Scholar
Sherwani SFK, Sapuan SM, Leman Z, Zainuddin ES, Ilyas RA. Application of polymer composite materials in motorcycles: A comprehensive review. Biocomposite Synth. Compos. Automot. Appl., Elsevier; 2021, p. 401–26. https://doi.org/10.1016/B978-0-12-820559-4.00015-8.
Google Scholar
Ilyas RA, Sapuan SM, Asyraf MRM, Atikah MSN, Ibrahim R, Dele-Afolabi TT, et al. Introduction to Biofiller-Reinforced Degradable Polymer Composites. In: Jumaidin R, Sapuan SM, Ismail H, editors. Biofiller-Reinforced Biodegrad. Polym. Compos. 1st ed., Boca Raton, USA: CRC Press; 2020, p. 1–23.
Google Scholar
Harussani MM, Sapuan SM, Rashid U, Khalina A. Development and Characterization of Polypropylene Waste from Personal Protective Equipment (PPE)-Derived Char-Filled Sugar Palm Starch Biocomposite Briquettes. Polymers (Basel) 2021;13:1707. https://doi.org/https://doi.org/10.3390/polym13111707.
Google Scholar
Syafiq R, Sapuan SM, Zuhri MYM, Ilyas RA, Nazrin A, Sherwani SFK, et al. Antimicrobial Activities of Starch-Based Biopolymers and Biocomposites Incorporated with Plant Essential Oils: A Review. Polymers (Basel) 2020;12:2403. https://doi.org/10.3390/polym12102403.
Google Scholar
Ilyas RA, Sapuan SM, Atiqah A, Ibrahim R, Abral H, Ishak MR, et al. Sugar palm ( Arenga pinnata [ Wurmb .] Merr ) starch films containing sugar palm nanofibrillated cellulose as reinforcement: Water barrier properties. Polym Compos 2020;41:459–67. https://doi.org/10.1002/pc.25379.
Google Scholar
Edhirej A, Sapuan SM, Jawaid M, Zahari NI. Preparation and characterization of cassava bagasse reinforced thermoplastic cassava starch. Fibers Polym 2017;18:162–71. https://doi.org/10.1007/s12221-017-6251-7.
Google Scholar
Sapuan SM, Ilyas RA, Ishak MR, Leman Z, Huzaifah MRM, Ammar IM, et al. Development of Sugar Palm–Based Products: A Community Project. Sugar Palm Biofibers, Biopolym. Biocomposites. 1st ed., Boca Raton, USA: CRC Press/Taylor & Francis Group; 2018, p. 245–66. https://doi.org/10.1201/9780429443923-12.
Google Scholar
Sanyang ML, Ilyas RA, Sapuan SM, Jumaidin R. Sugar palm starch-based composites for packaging applications. In: Jawaid M, Swain S, editors. Bionanocomposites Packag. Appl. 1st ed., Cham, Switzerland: Springer International Publishing; 2018, p. 125–47. https://doi.org/10.1007/978-3-319-67319-6_7.
Google Scholar
Hazrol MD, Sapuan SM, Ilyas RA, Othman ML, Sherwani SFK. Electrical properties of sugar palm nanocrystalline cellulose reinforced sugar palm starch nanocomposites. Polimery 2020;65:363–70. https://doi.org/10.14314/polimery.2020.5.4.
Google Scholar
Ibrahim MIJ, Sapuan SM, Zainudin ES, Zuhri MYM. Preparation and characterization of cornhusk/sugar palm fiber reinforced Cornstarch-based hybrid composites. J Mater Res Technol 2020;9:200–11. https://doi.org/10.1016/j.jmrt.2019.10.045.
Google Scholar
Abral H, Ariksa J, Mahardika M, Handayani D, Aminah I, Sandrawati N, et al. Transparent and antimicrobial cellulose film from ginger nanofiber. Food Hydrocoll 2020;98:105266. https://doi.org/10.1016/j.foodhyd.2019.105266.
Google Scholar
Ren J, Dang KM, Pollet E, Avérous L. Preparation and characterization of thermoplastic potato starch/halloysite nano-biocomposites: Effect of plasticizer nature and nanoclay content. Polymers (Basel) 2018;10. https://doi.org/10.3390/polym10080808.
Google Scholar
Hazrati KZ, Sapuan SM, Zuhri MYM, Jumaidin R. Preparation and characterization of starch-based biocomposite films reinforced by Dioscorea hispida fibers. J Mater Res Technol 2021;15:1342–55. https://doi.org/10.1016/j.jmrt.2021.09.003.
Google Scholar
Sanyang ML, Sapuan SM, Jawaid M, Ishak MR, Sahari J. Effect of Plasticizer Type and Concentration on Dynamic Mechanical Properties of Sugar Palm Starch–Based Films. Int J Polym Anal Charact 2015;20:627–36. https://doi.org/10.1080/1023666X.2015.1054107.
Google Scholar
Hazrol MD, Sapuan SM, Zainudin ES, Wahab NIA, Ilyas RA. Effect of Kenaf Fibre as Reinforcing Fillers in Corn Starch-Based Biocomposite Film. Polymers (Basel) 2022;14:1590. https://doi.org/10.3390/polym14081590.
Google Scholar
Shojaee-Aliabadi S, Hosseini H, Mohammadifar MA, Mohammadi A, Ghasemlou M, Ojagh SM, et al. Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil. Int J Biol Macromol 2013;52:116–24. https://doi.org/10.1016/j.ijbiomac.2012.08.026.
Google Scholar
Lomelí Ramírez MG, Satyanarayana KG, Iwakiri S, De Muniz GB, Tanobe V, Flores-Sahagun TS. Study of the properties of biocomposites. Part I. Cassava starch-green coir fibers from Brazil. Carbohydr Polym 2011;86:1712–22. https://doi.org/10.1016/j.carbpol.2011.07.002.
Google Scholar
Sahari J, Sapuan SM, Zainudin ES, Maleque MA. A New Approach to Use Arenga Pinnata as Sustainable Biopolymer: Effects of Plasticizers on Physical Properties. Procedia Chem 2012;4:254–9. https://doi.org/10.1016/j.proche.2012.06.035.
Google Scholar
ASTM D882-02. ASTM International. Stand Test Method Tensile Prop Thin Plast Sheeting 2002.
Google Scholar
Sheltami RM, Abdullah I, Ahmad I, Dufresne A, Kargarzadeh H. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr Polym 2012;88:772–9. https://doi.org/10.1016/j.carbpol.2012.01.062.
Google Scholar
Versino F, García MA. Cassava (Manihot esculenta) starch films reinforced with natural fibrous filler. Ind Crops Prod 2014. https://doi.org/10.1016/j.indcrop.2014.04.040.
Google Scholar
Sanyang ML, Sapuan SM, Jawaid M, Ishak MR, Sahari J. Effect of sugar palm-derived cellulose reinforcement on the mechanical and water barrier properties of sugar palm starch biocomposite films. BioResources 2016;11:4134–45. https://doi.org/10.15376/biores.11.2.4134-4145.
Google Scholar
Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J. Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm Starch/Agar hybrid composites. Int J Biol Macromol 2017;97:606–15. https://doi.org/10.1016/j.ijbiomac.2017.01.079.
Google Scholar
Hazrati KZ, Sapuan SM, Zuhri MYM, Jumaidin R. Effect of plasticizers on physical, thermal, and tensile properties of thermoplastic films based on Dioscorea hispida starch. Int J Biol Macromol 2021.
Google Scholar
Tarique J, Zainudin ES, Sapuan SM, Ilyas RA, Khalina A. Physical, Mechanical, and Morphological Performances of Arrowroot (Maranta arundinacea) Fiber Reinforced Arrowroot Starch Biopolymer Composites. Polymers (Basel) 2022;14:388. https://doi.org/10.3390/polym14030388.
Google Scholar
Jawaid M, Abdul Khalil HPS. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydr Polym 2011;86:1–18. https://doi.org/10.1016/j.carbpol.2011.04.043.
Google Scholar
Ilyas RA, Sapuan SM, Ishak MR. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydr Polym 2018;181:1038–51. https://doi.org/10.1016/j.carbpol.2017.11.045.
Google Scholar
P. Ramesh, B. Durga Prasad KLN. Characterization of Kenaf/Aloevera Fiber Reinforced PLA-Hybrid Biocomposite 2020.
Google Scholar
Ilyas RA, Sapuan SM, Ibrahim R, Abral H, Ishak MR, Zainudin ES, et al. Thermal, Biodegradability and Water Barrier Properties of Bio-Nanocomposites Based on Plasticised Sugar Palm Starch and Nanofibrillated Celluloses from Sugar Palm Fibres. J Biobased Mater Bioenergy 2020;14:234–48. https://doi.org/10.1166/jbmb.2020.1951.
Google Scholar
Sanyang M, Sapuan S, Jawaid M, Ishak M, Sahari J. Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata) Starch. Polymers (Basel) 2015;7:1106–24. https://doi.org/10.3390/polym7061106.
Google Scholar
Bodur MS, Englund K, Bakkal M. Water absorption behavior and kinetics of glass fiber/waste cotton fabric hybrid composites. J Appl Polym Sci 2017;134:45506. https://doi.org/10.1002/app.45506.
Google Scholar
Rosa MF, Chiou B sen, Medeiros ES, Wood DF, Williams TG, Mattoso LHC, et al. Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites. Bioresour Technol 2009;100:5196–202. https://doi.org/10.1016/j.biortech.2009.03.085.
Google Scholar
Saravanakumar SS, Kumaravel A, Nagarajan T, Sudhakar P, Baskaran R. Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydr Polym 2013;92:1928–33. https://doi.org/10.1016/j.carbpol.2012.11.064.
Google Scholar
Arthanarieswaran VP, Kumaravel A, Saravanakumar SS. Characterization of New Natural Cellulosic Fiber from Acacia leucophloea Bark. Int J Polym Anal Charact 2015;20:367–76. https://doi.org/10.1080/1023666X.2015.1018737.
Google Scholar
Paraginski RT, Vanier NL, Moomand K, de Oliveira M, Zavareze E da R, e Silva RM, et al. Characteristics of starch isolated from maize as a function of grain storage temperature. Carbohydr Polym 2014;102:88–94. https://doi.org/10.1016/j.carbpol.2013.11.019.
Google Scholar
Tarique J, Sapuan SM, Khalina A. Extraction and Characterization of a Novel Natural Lignocellulosic (Bagasse and Husk) Fibers from Arrowroot ( Maranta Arundinacea ). J Nat Fibers 2021:1–17. https://doi.org/10.1080/15440478.2021.1993418.
Google Scholar
Ibrahim MIJ, Sapuan SM, Zainudin ES, Zuhri MYM. Potential of using multiscale corn husk fiber as reinforcing filler in cornstarch-based biocomposites. Int J Biol Macromol 2019;139:596–604. https://doi.org/10.1016/j.ijbiomac.2019.08.015.
Google Scholar
Saba N, Safwan A, Sanyang ML, Mohammad F, Pervaiz M, Jawaid M, et al. Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 2017;102:822–8. https://doi.org/10.1016/j.ijbiomac.2017.04.074.
Google Scholar
Sanyang ML, Sapuan SM, Jawaid M, Ishak MR, Sahari J. Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (arenga pinnata) starch for food packaging. J Food Sci Technol 2016;53:326–36. https://doi.org/10.1007/s13197-015-2009-7.
Google Scholar
Zuo X, Zhang M, He E, Zhang P, Yang J, Zhu X, et al. Magnetic, dielectric, and magneto-dielectric properties of Aurivillius Bi7Fe2CrTi3O21ceramic. Ceram Int 2018;44:5319–26. https://doi.org/10.1016/j.ceramint.2017.12.150.
Google Scholar
Zuo X, Zhang M, He E, Guan B, Qin Y, Yang J, et al. Structural, magnetic, and dielectric properties of W/Cr co-substituted Aurivillius Bi5FeTi3O15. J Alloys Compd 2017;726:1040–6. https://doi.org/10.1016/j.jallcom.2017.08.077.
Google Scholar
Zhong Y, Li Y. Effects of glycerol and storage relative humidity on the properties of kudzu starch-based edible films. Starch/Staerke 2014;66:524–32. https://doi.org/10.1002/star.201300202.
Google Scholar
Faruk O, Bledzki AK, Fink H-P, Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 2012;37:1552–96. https://doi.org/10.1016/j.progpolymsci.2012.04.003.
Google Scholar
Hazrol MD, Sapuan SM, Zainudin ES, Zuhri MYM, Abdul Wahab NI. Corn Starch (Zea mays) Biopolymer Plastic Reaction in Combination with Sorbitol and Glycerol. Polymers (Basel) 2021;13:242. https://doi.org/10.3390/polym13020242.
Google Scholar
Zainuddin SYZ, Ahmad I, Kargarzadeh H, Abdullah I, Dufresne A. Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites. Carbohydr Polym 2013;92:2299–305. https://doi.org/10.1016/j.carbpol.2012.11.106.
Google Scholar
Nordin N, Othman SH, Rashid SA, Basha RK. Effects of glycerol and thymol on physical, mechanical, and thermal properties of corn starch films. Food Hydrocoll 2020;106:105884. https://doi.org/10.1016/j.foodhyd.2020.105884.
Google Scholar
Galindez A, Daza LD, Homez-Jara A, Eim VS, Váquiro HA. Characterization of ulluco starch and its potential for use in edible films prepared at low drying temperature. Carbohydr Polym 2019;215:143–50. https://doi.org/10.1016/j.carbpol.2019.03.074.
Google Scholar
Cerqueira MA, Souza BWS, Teixeira JA, Vicente AA. Effect of glycerol and corn oil on physicochemical properties of polysaccharide films – A comparative study. Food Hydrocoll 2012;27:175–84. https://doi.org/10.1016/j.foodhyd.2011.07.007.
Google Scholar
Jafarzadeh S, Alias AK, Ariffin F, Mahmud S. Physico-mechanical and microstructural properties of semolina flour films as influenced by different sorbitol/glycerol concentrations. Int J Food Prop 2018;21:983–95. https://doi.org/10.1080/10942912.2018.1474056.
Google Scholar
Ili Balqis AM, Nor Khaizura MAR, Russly AR, Nur Hanani ZA. Effects of plasticizers on the physicochemical properties of kappa-carrageenan films extracted from Eucheuma cottonii. Int J Biol Macromol 2017;103:721–32. https://doi.org/10.1016/j.ijbiomac.2017.05.105.
Google Scholar
Edhirej A, Sapuan SM, Jawaid M, Zahari NI. Effect of various plasticizers and concentration on the physical, thermal, mechanical, and structural properties of cassava-starch-based films. Starch/Staerke 2017;69:1–11. https://doi.org/10.1002/star.201500366.
Google Scholar
Nazrin A, Sapuan SM, Zuhri MYM, Ilyas RA, Syafiq R, Sherwani SFK. Nanocellulose Reinforced Thermoplastic Starch (TPS), Polylactic Acid (PLA), and Polybutylene Succinate (PBS) for Food Packaging Applications. Front Chem 2020;8:1–12. https://doi.org/10.3389/fchem.2020.00213.
Google Scholar
Prachayawarakorn J, Limsiriwong N, Kongjindamunee R, Surakit S. Effect of Agar and Cotton Fiber on Properties of Thermoplastic Waxy Rice Starch Composites. J Polym Environ 2012;20:88–95. https://doi.org/10.1007/s10924-011-0371-8.
Google Scholar
Kizil R, Irudayaraj J, Seetharaman K. Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. J Agric Food Chem 2002;50:3912–8. https://doi.org/10.1021/jf011652p.
Google Scholar
Kaewtatip K, Thongmee J. Effect of kraft lignin and esterified lignin on the properties of thermoplastic starch. Mater Des 2013;49:701–4. https://doi.org/10.1016/j.matdes.2013.02.010.
Google Scholar
Wu Y, Geng F, Chang PR, Yu J, Ma X. Effect of agar on the microstructure and performance of potato starch film. Carbohydr Polym 2009;76:299–304. https://doi.org/10.1016/j.carbpol.2008.10.031.
Google Scholar
Ilyas RA, Sapuan SM, Atikah MSN, Ibrahim R, Syafiq R, Hazrol MD, et al. Tensile Properties of Sugar Palm Fiber-Reinforced Polymer Composites: A Comprehensive Review. In: Jumaidin R, Sapuan SM, Ismail H, editors. Biofiller-Reinforced Biodegrad. Polym. Compos. 1st ed., Boca Raton, USA: CRC Press; 2020, p. 243–66.
Google Scholar
Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A. Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose 2011;18:443–50. https://doi.org/10.1007/s10570-010-9480-0.
Google Scholar
Sukyai P, Sriroth KR, Lee BH, Hyun JK. The Effect of Bacterial Cellulose on the Mechanical and Thermal Expansion Properties of Kenaf/Polylactic Acid Composites. Appl Mech Mater 2011;117–119:1343–51. https://doi.org/10.4028/www.scientific.net/AMM.117-119.1343.
Google Scholar
Müller CMO, Laurindo JB, Yamashita F. Effect of cellulose fibers on the crystallinity and mechanical properties of starch-based films at different relative humidity values. Carbohydr Polym 2009;77:293–9. https://doi.org/10.1016/j.carbpol.2008.12.030.
Google Scholar
Ilyas RA, Sapuan SM, Ishak MR, Zainudin ES. Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): Effect of cycles on their yield, physic-chemical, morphological and thermal behavior. Int J Biol Macromol 2019;123:379–88. https://doi.org/10.1016/j.ijbiomac.2018.11.124.
Google Scholar
Salaberria AM, Labidi J, Fernandes SCM. Chitin nanocrystals and nanofibers as nano-sized fillers into thermoplastic starch-based biocomposites processed by melt-mixing. Chem Eng J 2014;256:356–64. https://doi.org/10.1016/j.cej.2014.07.009.
Google Scholar
Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H. Kenaf reinforced biodegradable composite. Compos Sci Technol 2003;63:1281–6. https://doi.org/10.1016/S0266-3538(03)00099-X.
Google Scholar
Zampaloni M, Pourboghrat F, Yankovich SA, Rodgers BN, Moore J, Drzal LT, et al. Kenaf natural fiber reinforced polypropylene composites: A discussion on manufacturing problems and solutions. Compos Part A Appl Sci Manuf 2007;38:1569–80. https://doi.org/10.1016/j.compositesa.2007.01.001.
Google Scholar
Nazrin A, Sapuan SM, Zuhri MYM, Tawakkal ISMA, Ilyas RA. Water barrier and mechanical properties of sugar palm crystalline nanocellulose reinforced thermoplastic sugar palm starch (TPS)/poly(lactic acid) (PLA) blend bionanocomposites. Nanotechnol Rev 2021;10:431–42. https://doi.org/10.1515/ntrev-2021-0033.
Google Scholar
Ilyas RA, Sapuan SM, Kadier A, Krishnan S, Atikah MSN, Ibrahim R, et al. Mechanical Testing of Sugar Palm Fiber Reinforced Sugar Palm Biopolymer Composites. In: Al-Oqla F, Sapuan SM, editors. Adv. Process. Prop. Appl. Starch Other Bio-Based Polym. 1st ed., Elsevier; 2020, p. 89–110. https://doi.org/10.1016/B978-0-12-819661-8.00007-X.
Google Scholar
Liu W, Drzal LT, Mohanty AK, Misra M. Influence of processing methods and fiber length on physical properties of kenaf fiber reinforced soy based biocomposites. Compos Part B Eng 2007;38:352–9. https://doi.org/10.1016/j.compositesb.2006.05.003.
Google Scholar
Liu W, Jawerth LM, Sparks EA, Falvo MR, Hantgan RR, Superfine R, et al. Fibrin Fibers Have Extraordinary Extensibility and Elasticity. Science (80- ) 2006;313:634–634. https://doi.org/10.1126/science.1127317.
Google Scholar
Zavareze E da R, Pinto VZ, Klein B, El Halal SLM, Elias MC, Prentice-Hernández C, et al. Development of oxidised and heat–moisture treated potato starch film. Food Chem 2012;132:344–50. https://doi.org/10.1016/j.foodchem.2011.10.090.
Google Scholar
Xu J, Andrews TD, Shi Y. Recent Advances in the Preparation and Characterization of Intermediately to Highly Esterified and Etherified Starches: A Review. Starch - Stärke 2020;72:1900238. https://doi.org/10.1002/star.201900238.
Google Scholar