Devesh Sane, Apurv Gadekar, Vandana Jamdar, Anagha Sabnis (2023)
Polyurethanes: Preparation, Properties, and Applications Volume 1: Fundamentals. ACS Symposium Series, 1452, 161.
10.1021/bk-2023-1452.ch009Marcin Włoch (2021)
Materials and Chemistry of Flame-Retardant Polyurethanes Volume 1: A Fundamental Approach. ACS Symposium Series, 1399, 265.
10.1021/bk-2021-1399.ch012Zach Westman, Manasa Perikala, Xinyi Wu, Kelsey Richardson, Christopher S. Letko, Vojtech Vlcek, Phillip Christopher, Mahdi M. Abu-Omar (2024)
Polyurethane foam acidolysis with carboxylic acids: acid structure dictates N-containing product distribution and kinetics. Polymer Chemistry, 15(46), 4741.
10.1039/D4PY01116CZach Westman, Sofia Rivalta Popescu, Alan L. Stottlemyer, Christopher S. Letko, Nasim Hooshyar, Vojtech Vlcek, Mahdi M. Abu-Omar, Phillip Christopher (2025)
A shrinking core kinetic model for polyol release during acidolysis of polyurethane foam by dicarboxylic acids. Chemical Engineering Journal, 515, 163600.
10.1016/j.cej.2025.163600Baoyuan Liu, Zach Westman, Kelsey Richardson, Dingyuan Lim, Alan L. Stottlemyer, Thomas Farmer, Paul Gillis, Vojtech Vlcek, Phillip Christopher, Mahdi M. Abu-Omar (2023)
Opportunities in Closed-Loop Molecular Recycling of End-of-Life Polyurethane. ACS Sustainable Chemistry & Engineering, 11(16), 6114.
10.1021/acssuschemeng.2c07422Hui-Wen He, Kai-Ming Du, Han-Jing Yu, Yi-Feng Zhu, Hang Su, Fan Yang, Meng Ma, Yan-Qin Shi, Xiao-Jun Zhang, Si Chen, Xu Wang (2023)
A new strategy for efficient chemical degradation and recycling of polyurethane materials: a multi-stage degradation method. Green Chemistry, 25(16), 6405.
10.1039/D3GC01244AN. Gama, B. Godinho, P. Madureira, G. Marques, A. Barros-Timmons, A. Ferreira (2024)
Polyurethane Recycling Through Acidolysis: Current Status and Prospects for the Future. Journal of Polymers and the Environment, 32(10), 4777.
10.1007/s10924-024-03278-6Y. Aksu, H. Haykiri-Acma, S. Yaman (2025)
Recycle of Flexible Polyurethane Foam by Acidolysis and Reuse of Recovered Polyol. Journal of Polymers and the Environment, 33(2), 1147.
10.1007/s10924-024-03467-3Takanori Iwasaki, Yuto Yamada, Naoki Naito, Kyoko Nozaki (2024)
Chemoselective Hydrogenolysis of Urethanes to Formamides and Alcohols in the Presence of More Electrophilic Carbonyl Compounds. Journal of the American Chemical Society, 146(37), 25562.
10.1021/jacs.4c06553Hui-Wen He, Hang Hu, Kai-Ming Du, Ming Lu, Fan Yang, Ling-Xiao Cui, Meng Ma, Yu-Lu Zhu, Yan-Qin Shi, Si Chen, Xu Wang (2025)
Prospects of high-value recycling methods for polyurethane based on the selective cleavage of C–O/C–N bonds. Green Chemistry, 27(28), 8467.
10.1039/D5GC01889GRocio Villa, Rebeca Salas, María Maciá, Francisco Velasco, Belén Altava, Eduardo García‐Verdugo, Pedro Lozano (2025)
How to Easily Depolymerize Polyurethane Foam Wastes by Superbase Catalysts in Ionic Liquids Below 100 °C. Angewandte Chemie, 137(5),
10.1002/ange.202418034Steffan K. Kristensen, Alexander Ahrens, Bjarke S. Donslund, Troels Skrydstrup (2024)
Perspective on the Development of Monomer Recovery Technologies from Plastics Designed to Last. ACS Organic & Inorganic Au, 4(4), 373.
10.1021/acsorginorgau.4c00009Gabriel Kiss, Gerlinde Rusu, Geza Bandur, Iosif Hulka, Daniel Romecki, Francisc Péter (2021)
Advances in Low-Density Flexible Polyurethane Foams by Optimized Incorporation of High Amount of Recycled Polyol. Polymers, 13(11), 1736.
10.3390/polym13111736Baoyuan Liu, Zach Westman, Kelsey Richardson, Dingyuan Lim, Alan L. Stottlemyer, Paul Gillis, Christopher S. Letko, Nasim Hooshyar, Vojtech Vlcek, Phillip Christopher, Mahdi M. Abu-Omar (2024)
Vapor-Phase Dicarboxylic Acids and Anhydrides Drive Depolymerization of Polyurethanes. ACS Macro Letters, 13(4), 435.
10.1021/acsmacrolett.4c00008Rocio Villa, Rebeca Salas, María Maciá, Francisco Velasco, Belén Altava, Eduardo García‐Verdugo, Pedro Lozano (2025)
How to Easily Depolymerize Polyurethane Foam Wastes by Superbase Catalysts in Ionic Liquids Below 100 °C. Angewandte Chemie International Edition, 64(5),
10.1002/anie.202418034Martin B. Johansen, Bjarke S. Donslund, Erik Larsen, Morten B. Olsen, Jakob A. L. Pedersen, Mads Boye, Josefine K. C. Smedsgård, Robert Heck, Steffan K. Kristensen, Troels Skrydstrup (2023)
Closed-Loop Recycling of Polyols from Thermoset Polyurethanes by tert-Amyl Alcohol-Mediated Depolymerization of Flexible Foams. ACS Sustainable Chemistry & Engineering, 11(29), 10737.
10.1021/acssuschemeng.3c01469Roghayeh Heiran, Abolfazl Ghaderian, Arunima Reghunadhan, Fatemeh Sedaghati, Sabu Thomas, Amir hossein Haghighi (2021)
Glycolysis: an efficient route for recycling of end of life polyurethane foams. Journal of Polymer Research, 28(1),
10.1007/s10965-020-02383-zZach Westman, Baoyuan Liu, Kelsey Richardson, Madeleine Davis, Dingyuan Lim, Alan L. Stottlemyer, Christopher S. Letko, Nasim Hooshyar, Vojtech Vlcek, Phillip Christopher, Mahdi M. Abu-Omar (2024)
Influence of Carboxylic Acid Structure on the Kinetics of Polyurethane Foam Acidolysis to Recycled Polyol. JACS Au, 4(8), 3194.
10.1021/jacsau.4c00495Huiwen He, Hang Su, Hanjing Yu, Kaiming Du, Fan Yang, Yifeng Zhu, Meng Ma, Yanqin Shi, Xiaojun Zhang, Si Chen, Xu Wang (2023)
Chemical Recycling of Waste Polyurethane Foams: Efficient Acidolysis under the Catalysis of Zinc Acetate. ACS Sustainable Chemistry & Engineering, 11(14), 5515.
10.1021/acssuschemeng.2c07260N. Gama, B. Godinho, G. Marques, R. Silva, A. Barros-Timmons, A. Ferreira (2020)
Recycling of polyurethane scraps via acidolysis. Chemical Engineering Journal, 395, 125102.
10.1016/j.cej.2020.125102Ismail Omrani, Reza Mohammadi Berenjegani (2024)
Chemical Recycling of Flexible Polyurethane Foam Scraps Using Bio-Based Acidolysis Agents. ACS Applied Polymer Materials, 6(17), 10698.
10.1021/acsapm.4c01846Thomas B. Bech, Bjarke S. Donslund, Steffan K. Kristensen, Troels Skrydstrup (2024)
Chemical separation of polyurethane via acidolysis – combining acidolysis with hydrolysis for valorisation of aromatic amines. Green Chemistry, 26(14), 8395.
10.1039/D4GC00819GHe H.W. (2025)
Prospects of high-value recycling methods for polyurethane based on the selective cleavage of C-O/C-N bonds. Green Chemistry, 27(28), 8467-8491.
10.1039/d5gc01889gWestman Z. (2024)
Polyurethane foam acidolysis with carboxylic acids: acid structure dictates N-containing product distribution and kinetics. Polymer Chemistry, 15(46), 4741-4752.
10.1039/d4py01116cTerreni E. (2024)
Synthesis of novel bio-based and degradable polyurethanes using lignin oligomers. Chemical Engineering Science, 298,
10.1016/j.ces.2024.120325Bech T.B. (2024)
Chemical separation of polyurethane via acidolysis - combining acidolysis with hydrolysis for valorisation of aromatic amines. Green Chemistry, 26(14), 8395-8404.
10.1039/d4gc00819gRossignolo G. (2023)
Recycling of polyurethanes: where we are and where we are going. Green Chemistry, 26(3), 1132-1152.
10.1039/d3gc02091fHe H.W. (2023)
A new strategy for efficient chemical degradation and recycling of polyurethane materials: a multi-stage degradation method. Green Chemistry, 25(16), 6405-6415.
10.1039/d3gc01244aLuo Z. (2023)
Performances of Green Velvet Material (PLON) Used in Upholstered Furniture. Bioresources, 18(3), 5108-5119.
10.15376/biores.18.3.5108-5119