Abdollahi paynavandi M., Ebrahimi R., and Amiri A., Study of Loading and Releasing of Fluvoxamine in Hydrogels Prepared by Ultrasound Irradiation. Iran. J. Polym. Sci. Tech., (JIPST), 28(3): 232-225, 2015. doi: 10.22063/jipst.2015.1258.
Google Scholar
Wang L., Zhang J., and Wang A., Removal of methylene blue from aqueous solution using chitosan-g-poly (acrylic acid)/montmorillonite superadsorbent nanocomposite, Colloids and Surfaces A: Physicochem. Eng. Aspects 322: 47–53, 2008.
Google Scholar
Malatji N., Makhado E., Modibane K.D, Ramohlola K.E, Th. C Maponya, G. R Monama, and M. J Hato, Removal of methylene blue from wastewater using hydrogel nanocomposites: A review, Nanomat. Nanotech., 11: 1–27, 2021.
Google Scholar
Ahmed, E.M., Hydrogel: Preparation, characterization, and applications: A review, J. Adv. Res., 6(2): 105-121, 2015. doi.org/10.1016/j.jare.2013.07.006.
Google Scholar
Darban Z., Shahabuddin S., Gaur R., Ahmad I., and Sridewi N., Hydrogel-Based Adsorbent Material for the Effective Removal of Heavy Metals from Wastewater: A Comprehensive Review. Gels, 8: 263, 2022. doi.org/10.3390/gels8050263
Google Scholar
Landers R., Hübner U., Schmelzeisen R., and Mülhaupt R., Rapid prototyping of scaffolds derived from thermos reversible hydrogels and tailored for applications in tissue engineering. Biomaterials, 23(23): 4437-4447, 2002.
Google Scholar
Pandey K.K., Mechanical and acoustical properties of silver chloride from 100 K to 600 K, Materials Today: Proceedings, 47(8): 1520-1522, 2021. doi.org/10.1016/j.matpr.2021.03.193
Google Scholar
Salem W., Leitner D.R., Zingl F.G., Schratter G., Prassl R., Goessler W., Reidl J., and Schild S. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int. J. Med. Microbiol., 305(1), 85-95, 2015. doi.org/10.1016/j.ijmm.2014.11.005
Google Scholar
Afzal S., Zahid M., Nimra S.S., Fatima Z., Shakir H.M.F., and Rehan Z.A., Ultrasound Hydrogel: A Review on Materials and Method. J. Mod. Polym. Chem. Mater., 1(1): 2, 2022.
Google Scholar
Jasim L., and Aljeboree A., Hydrogels in the removal of industrial pollution: Adsorption characteristics for the removal of a toxic dye from aqueous solutions. Casp. J. Environ. Sci., 19(5): 789-799, 2021. doi: 10.22124/cjes.2021.5209
Google Scholar
Malatji N., Makhado E., Modibane K.D., Ramohlola, K.E., Maponya, T.C., Monama, G. R., and Hato M.J., Removal of methylene blue from wastewater using hydrogel nanocomposites: A review. Nanomater. Nanotechnol., 11: 1-27 (2021). doi.org/10.1177/18479804211039425
Google Scholar
Salama, A., Preparation of CMC-g-P(SPMA) super adsorbent hydrogels: Exploring their capacity for MB removal from waste water. Int. J. Biol. Macromol., 106: 940-946, 2018.
Google Scholar
Faghani H.A., and Heshmati Jannat Magham A., Removal of methylene blue from aqueous solutions by beta-cyclodextrin / Zinc oxide composite, J. Soil water Conserv., 26(3): 109-125 (2019).
Google Scholar
Pooresmaeil M., Mansoori Y., Mirzaeinejad M., and Khodayari A., Efficient removal of methylene blue by novel magnetic hydrogel nanocomposites of poly (acrylic acid). Adv. Polym. Technol., 37(1): 262-274, 2018.
Google Scholar
Khan T.A., Nazir M., Ali I., and Kumar A., Removal of Chromium (VI) from aqueous solution using guar gum-nano zinc oxide biocomposite adsorbent. Arabian J. Chem., 10(2): S2388-S2398, 2017.
Google Scholar
Li J., Fang L., Tait W.R., Sun L., Zhao L., and Qian, L., Preparation of conductive composite hydrogels from carboxymethyl cellulose and polyaniline with a nontoxic crosslinking agent. Rsc. Adv., 7(86): 54823-54828, 2017.
Google Scholar
Zhang C., Dai Y., Wu Y., Lu G., Cao Z., Cheng J., Wang K., Yang H., Xia Y., Wen X., Ma W., Liu C., and Wang Z., Facile preparation of polyacrylamide/chitosan/Fe3O4 composite hydrogels for effective removal of methylene blue from aqueous solution. Carbohydr. Polym., 234: 115882, 2020.
Google Scholar
Makhado E., Pandey S., Modibane K.D., Kang M., and Hato M.J., Sequestration of methylene blue dye using sodium alginate poly(acrylic acid)@ZnO hydrogel nanocomposite: kinetic, Isotherm, and thermodynamic investigations. Int. J. Biol. Macromol., 162: 60-73, 2020.
Google Scholar
Hosseini H., Zirakjou A., McClements D.J., Goodarzi V., and Chen W.H., Removal of methylene blue from wastewater using ternary nanocomposite aerogel systems: Carboxymethyl cellulose grafted by polyacrylic acid and decorated with grapheme oxide, J. Hazard Mater., 421: 126752, 2022. doi.10.1016/j.jhazmat.2021.126752
Google Scholar
Azzam E.M.S., Elsofany W.I., Alrashdi G.K., Alenezi K.M., Alsukaibi A.K.D., Latif S., Abdulaziz F., and Atta A.M., New route for removal of Cu(II) using fabricated nanocomposite based on cationic surfactant/Ag-nanoparticles/silica gel, Arab. J. Chem., 15(7): 103897, 2022. doi.org/10.1016/j.arabjc.2022.103897.
Google Scholar
Salunkhe B., and Schuman T.P., Super-Adsorbent Hydrogels for Removal of Methylene Blue from Aqueous Solution: Dye Adsorption Isotherms, Kinetics, and Thermodynamic Properties. Macromol., 1: 256–275, 2021. doi.org/10.3390/macromol1040018.
Google Scholar
Lebkiri I., Abbou B., Kadiri L., Ouass A., Essaadaoui Y, Habssaoui A., Rifi El H., and Lebkiri A., Removal of methylene blue dye from aqueous solution using a superabsorbant hydrogel the polyacrylamide: isotherms and kinetic studies, Mediterr. J. Chem., 9(5): 1-9, 2019.
Google Scholar
Ullah A., Zahoor M., Ud Din W., Muhammad M., Khan F A, Sohail A, Ullah R, Ali E A., and Ananda Murthy H. C., Removal of Methylene Blue from Aqueous Solution Using Black Tea Wastes: Used as Efficient Adsorbent, Ads. Sci. Tech., 2022. doi.org/10.1155/2022/5713077.
Google Scholar
Eldeeb T.M., El-Nemr A., Khedr M.H., and El-Dek S.I., Novel bio-nanocomposite for efficient copper removal, Egypt. J. Aquat. Res., 47(3): 261-267, 2021. doi.org/10.1016/j.ejar.2021.07.002.
Google Scholar