Published : 2022-09-01

Polylactide containing nanoparticles - new carriers of active compounds

Abstract

Two amphiphilic block copolymers poly(L-lactide)-b-polyglycidol-b-poly(ethylene oxide) (PLA-b-PGly-b-PEOX) were synthesized: PLA-b-PGly-b-PEOX(I) with Mn equal 6260 (PLA), 510 (PGly) and 6600 (PEOX) and PLA-b-PGly-b-PEOX(II) with Mn equal 3600 (PLA), 500 (PGly) and 5500 (PEOX). Polyglycidol segment in PLA-b-PGly-b-PEOX(II) was modified in reaction with succinic anhydride - the reaction leading to conversion of -CH2OH groups of polyglycidol monomeric units to -CH2OC(O)CH2CH2COOH moieties with carboxyl groups [modified PLA-b-PGly-b-PEOX(II) was denoted as PLA-b-PGly-b-PEOX(IIc)]. Molecules of all three copolymers did self assemble in water into polymeric nanoparticles with number average diameters equal 20.0š0.8 nm [PLA-b-PGly-b-PEOX(I)], 20.9š0.3 nm [PLA-b-PGly-b-PEOX(II)] and 33š1 nm [PLA-b-PGly-b-PEOX(IIc)]. Critical aggregation concentration (CAC - a concentration above which nanoparticles are formed) was equal 1.55ź10-2, 7.0ź10-2 and 2.51ź10-1 g/L for PLA-b-PGly-b-PEOX(I), and PLA-b-PGly-b-PEOX(IIc), respectively. Nanoparticles were formed also in presence of pyrene and partition of pyrene between solution and nanoparticles was determined. For example, for concentrations of PLA-b-PGly-b-PEOX(II) and pyrene equal 1.95ź10-3 g/L and 4.94ź10-7 g/L the fraction of encapsulated pyrene was ca. 10 % whereas for the same concentration of pyrene but for higher concentration of PLA-b-PGly-b-PEOX(II), above 2.50ź10-1 g/L, the whole amount of pyrene was incorporated into nanoparticles. Profile of pyrene release from nanoparticles was bi-exponential with the rate constant for "fast" (kf) component equal 9.5ź10-2, 3.8ź10-2 and 1.5ź10-1 L/h, for PLA-b-PGly-b-PEOX(I), PLA-b-PGly-b-PEOX(II) and PLA-b-PGly-b-PEOX(IIc), respectively, and with the rate constant for "slow" (ks) component essentially the same for nanoparticles from all terpolymers equal (8.4š0.2)ź10-3 L/h. It has been suggested that "fast" rate describes the release of pyrene from shells of nanoparticles whereas the "slow" one describes the release from their cores.


Details

References

Statistics

Authors

Download files

PDF

Słomkowski, S., Gadzinowski, M., Sosnowski, S., & Radomska-Galant, I. (2022). Polylactide containing nanoparticles - new carriers of active compounds. Polimery, 50(7-8), 546–554. Retrieved from https://ichp.vot.pl/index.php/p/article/view/1662