Published : 2022-09-19

Electroconductivity measurements in the solutions of catalytic systems based on metallocene complexes and various activators

Abstract

Electroconductivity (%) was studied in 10 ' to 1CT7 M bent-sandwich and ansa-metallocene (Cp2 MX2/ Me2SiInd2MX2, Me2SiCp2MX2, Me2SiCp-t-BuMX2, Me2Si(2-MeInd)2MX2, (2-PhInd)2MCl2, EtInd2ZrCl2 and ((cyc/o-C6Hn)2Cp)2ZrCl2; M = Ti, Zr; X = Cl, Me) solutions (toluene, dimethy-lene chloride as varying polarity solvents) of homogeneous Ziegler-Natta catalyst systems derived in situ from the metallocene precursors and an organoaluminum compound (AlEt3, AlEt2Cl, Al-i-Bu3), polymethylaluminoxa-ne (MAO) or perfluorophenyl borate (Ph3CB(C6F5)4, Me2PhHNB(C5F5)4) as co-catalyst in relation to metallocene /activator ratio over a wide metallocene concentration range and in the absence or presence of an a-olefin. The specific electroconductivity of the reaction product solution was almost always higher than the sum of the electroconductivities of the individual component solutions measured under comparable conditions (Table 1). Apparent dissociation degrees and charged species equilibrium concentrations were evaluated (Tables 2, 3). The time profiles of electroconductivities and polymerization rates measured simultaneously were found to follow analogously descending courses (Figs. 3, 4). Low or very low metallocene concentration (1CTJ-1CT7 M), perfluorophenyl borate as activator, and sometimes also the a-olefin (propylene, hexene) added were found to enhance the electroconductivity (Table 1), i.e., to favor the formation of charged species.


Details

Statistics

Authors

Download files

PDF

Babkina, O. N., Saratovskikh, S. L., & Bravaya, N. M. (2022). Electroconductivity measurements in the solutions of catalytic systems based on metallocene complexes and various activators. Polimery, 46(6), 393–396. Retrieved from https://ichp.vot.pl/index.php/p/article/view/2087