Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007;2:751–60. https://doi.org/10.1038/nnano.2007.387.
Google Scholar
Castaldello A, Brocca-Cofano E, Voltan R, Triulzi C, Altavilla G, Laus M, et al. DNA prime and protein boost immunization with innovative polymeric cationic core-shell nanoparticles elicits broad immune responses and strongly enhance cellular responses of HIV-1 tat DNA vaccination. Vaccine 2006;24:5655–69. https://doi.org/10.1016/j.vaccine.2006.05.058.
Google Scholar
Houchin-Ray T, Whittlesey KJ, Shea LD. Spatially Patterned Gene Delivery for Localized Neuron Survival and Neurite Extension. Molecular Therapy 2007;15:705–12. https://doi.org/10.1038/sj.mt.6300106.
Google Scholar
Sun W, Wang H, Xie C, Hu Y, Yang X, Xu H. An attempt to directly trace polymeric nanoparticles in vivo with electron microscopy. Journal of Controlled Release 2006;115:259–65. https://doi.org/10.1016/j.jconrel.2006.08.007.
Google Scholar
Mohd Zaffarin AS, Ng S-F, Ng MH, Hassan H, Alias E. Pharmacology and Pharmacokinetics of Vitamin E: Nanoformulations to Enhance Bioavailability. Int J Nanomedicine 2020;Volume 15:9961–74. https://doi.org/10.2147/IJN.S276355.
Google Scholar
Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 2012;41:2971. https://doi.org/10.1039/c2cs15344k.
Google Scholar
Zhang L, Chan JM, Gu FX, Rhee J-W, Wang AZ, Radovic-Moreno AF, et al. Self-Assembled Lipid−Polymer Hybrid Nanoparticles: A Robust Drug Delivery Platform. ACS Nano 2008;2:1696–702. https://doi.org/10.1021/nn800275r.
Google Scholar
Chou LYT, Ming K, Chan WCW. Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 2011;40:233–45. https://doi.org/10.1039/C0CS00003E.
Google Scholar
Lassalle V, Ferreira ML. PLA Nano- and Microparticles for Drug Delivery: An Overview of the Methods of Preparation. Macromol Biosci 2007;7:767–83. https://doi.org/10.1002/mabi.200700022.
Google Scholar
Jiang X, Xin H, Ren Q, Gu J, Zhu L, Du F, et al. Nanoparticles of 2-deoxy-d-glucose functionalized poly(ethylene glycol)-co-poly(trimethylene carbonate) for dual-targeted drug delivery in glioma treatment. Biomaterials 2014;35:518–29. https://doi.org/10.1016/j.biomaterials.2013.09.094.
Google Scholar
Varga N, Turcsányi Á, Hornok V, Csapó E. Vitamin E-Loaded PLA- and PLGA-Based Core-Shell Nanoparticles: Synthesis, Structure Optimization and Controlled Drug Release. Pharmaceutics 2019;11:357. https://doi.org/10.3390/pharmaceutics11070357.
Google Scholar
McCall RL, Sirianni RW. PLGA Nanoparticles Formed by Single- or Double-emulsion with Vitamin E-TPGS. Journal of Visualized Experiments 2013. https://doi.org/10.3791/51015.
Google Scholar
Park K, Skidmore S, Hadar J, Garner J, Park H, Otte A, et al. Injectable, long-acting PLGA formulations: Analyzing PLGA and understanding microparticle formation. Journal of Controlled Release 2019;304:125–34. https://doi.org/10.1016/j.jconrel.2019.05.003.
Google Scholar
Wan F, Yang M. Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying. Int J Pharm 2016;498:82–95. https://doi.org/10.1016/j.ijpharm.2015.12.025.
Google Scholar
Ecoflex® (PBAT): The original since 1998 – certified compostable biopolymer n.d. https://plastics-rubber.basf.com/global/en/performance_polymers/products/ecoflex.html (accessed November 10, 2022).
Google Scholar
Siafaka PI, Barmbalexis P, Bikiaris DN. Novel electrospun nanofibrous matrices prepared from poly(lactic acid)/poly(butylene adipate) blends for controlled release formulations of an anti-rheumatoid agent. European Journal of Pharmaceutical Sciences 2016;88:12–25. https://doi.org/10.1016/j.ejps.2016.03.021.
Google Scholar
Koster RM, Bogert M, de Leeuw B, Poels EK, Bliek A. Active sites in the clay catalysed dimerisation of oleic acid. J Mol Catal A Chem 1998;134:159–69. https://doi.org/10.1016/S1381-1169(98)00032-6.
Google Scholar
Jäger A, Gromadzki D, Jäger E, Giacomelli FC, Kozlowska A, Kobera L, et al. Novel “soft” biodegradable nanoparticles prepared from aliphatic based monomers as a potential drug delivery system. Soft Matter 2012;8:4343. https://doi.org/10.1039/c2sm07247e.
Google Scholar
Prowans P, Kowalczyk R, Wiszniewska B, Czapla N, Bargiel P, El Fray M. Bone Healing in the Presence of a Biodegradable PBS-DLA Copolyester and Its Composite Containing Hydroxyapatite. ACS Omega 2019;4:19765–71. https://doi.org/10.1021/acsomega.9b02539.
Google Scholar
Skrobot J, Zair L, Ostrowski M, el Fray M. New injectable elastomeric biomaterials for hernia repair and their biocompatibility. Biomaterials 2016;75:182–92. https://doi.org/10.1016/j.biomaterials.2015.10.037.
Google Scholar
Tallawi M, Zebrowski DC, Rai R, Roether JA, Schubert DW, el Fray M, et al. Poly(Glycerol Sebacate)/Poly(Butylene Succinate-Butylene Dilinoleate) Fibrous Scaffolds for Cardiac Tissue Engineering. Tissue Eng Part C Methods 2015;21:585–96. https://doi.org/10.1089/ten.tec.2014.0445.
Google Scholar
Bahramian B, Ma Y, Rohanizadeh R, Chrzanowski W, Dehghani F. A new solution for removing metal-based catalyst residues from a biodegradable polymer. Green Chemistry 2016;18:3740–8. https://doi.org/10.1039/C5GC01687H.
Google Scholar
Riss TL, Moravec RA. Use of Multiple Assay Endpoints to Investigate the Effects of Incubation Time, Dose of Toxin, and Plating Density in Cell-Based Cytotoxicity Assays. Assay Drug Dev Technol 2004;2:51–62. https://doi.org/10.1089/154065804322966315.
Google Scholar
Ciecholewska-Juśko D, Żywicka A, Junka A, Drozd R, Sobolewski P, Migdał P, et al. Superabsorbent crosslinked bacterial cellulose biomaterials for chronic wound dressings. Carbohydr Polym 2021;253:117247. https://doi.org/10.1016/j.carbpol.2020.117247.
Google Scholar
Sokołowska M, Nowak-Grzebyta J, Stachowska E, El Fray M. Enzymatic Catalysis in Favor of Blocky Structure and Higher Crystallinity of Poly(Butylene Succinate)-Co-(Dilinoleic Succinate) (PBS-DLS) Copolymers of Variable Segmental Composition. Materials 2022;15:1132. https://doi.org/10.3390/ma15031132.
Google Scholar
de Oliveira AM, Jäger E, Jäger A, Stepánek P, Giacomelli FC. Physicochemical aspects behind the size of biodegradable polymeric nanoparticles: A step forward. Colloids Surf A Physicochem Eng Asp 2013;436:1092–102. https://doi.org/10.1016/j.colsurfa.2013.08.056.
Google Scholar